Improved Semantic Role Labeling using Parameterized Neighborhood Memory Adaptation Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2011.14459
Deep neural models achieve some of the best results for semantic role labeling. Inspired by instance-based learning that utilizes nearest neighbors to handle low-frequency context-specific training samples, we investigate the use of memory adaptation techniques in deep neural models. We propose a parameterized neighborhood memory adaptive (PNMA) method that uses a parameterized representation of the nearest neighbors of tokens in a memory of activations and makes predictions based on the most similar samples in the training data. We empirically show that PNMA consistently improves the SRL performance of the base model irrespective of types of word embeddings. Coupled with contextualized word embeddings derived from BERT, PNMA improves over existing models for both span and dependency semantic parsing datasets, especially on out-of-domain text, reaching F1 scores of 80.2, and 84.97 on CoNLL2005, and CoNLL2009 datasets, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2011.14459
- https://arxiv.org/pdf/2011.14459
- OA Status
- green
- Cited By
- 4
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3106607871
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3106607871Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2011.14459Digital Object Identifier
- Title
-
Improved Semantic Role Labeling using Parameterized Neighborhood Memory AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-29Full publication date if available
- Authors
-
Ishan Jindal, Ranit Aharonov, Siddhartha Brahma, Huaiyu Zhu, Yunyao LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2011.14459Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2011.14459Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2011.14459Direct OA link when available
- Concepts
-
Computer science, Parameterized complexity, Word (group theory), Artificial intelligence, Representation (politics), Context (archaeology), Parsing, Natural language processing, Dependency grammar, Domain (mathematical analysis), Artificial neural network, Adaptation (eye), Machine learning, Algorithm, Mathematics, Political science, Paleontology, Physics, Geometry, Optics, Mathematical analysis, Politics, Biology, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3106607871 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2011.14459 |
| ids.doi | https://doi.org/10.48550/arxiv.2011.14459 |
| ids.mag | 3106607871 |
| ids.openalex | https://openalex.org/W3106607871 |
| fwci | |
| type | preprint |
| title | Improved Semantic Role Labeling using Parameterized Neighborhood Memory Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9865000247955322 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8083130717277527 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165464430 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6683633923530579 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[1].display_name | Parameterized complexity |
| concepts[2].id | https://openalex.org/C90805587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6416618824005127 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[2].display_name | Word (group theory) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.621167778968811 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5631194114685059 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5504403114318848 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C186644900 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4753313362598419 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[6].display_name | Parsing |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47183161973953247 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C164883195 |
| concepts[8].level | 3 |
| concepts[8].score | 0.45396503806114197 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q674834 |
| concepts[8].display_name | Dependency grammar |
| concepts[9].id | https://openalex.org/C36503486 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43135562539100647 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[9].display_name | Domain (mathematical analysis) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4306308627128601 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C139807058 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42883551120758057 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[11].display_name | Adaptation (eye) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36899662017822266 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16756996512413025 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08772870898246765 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C120665830 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[19].display_name | Optics |
| concepts[20].id | https://openalex.org/C134306372 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[20].display_name | Mathematical analysis |
| concepts[21].id | https://openalex.org/C94625758 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[21].display_name | Politics |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| concepts[23].id | https://openalex.org/C199539241 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[23].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8083130717277527 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[1].score | 0.6683633923530579 |
| keywords[1].display_name | Parameterized complexity |
| keywords[2].id | https://openalex.org/keywords/word |
| keywords[2].score | 0.6416618824005127 |
| keywords[2].display_name | Word (group theory) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.621167778968811 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5631194114685059 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.5504403114318848 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/parsing |
| keywords[6].score | 0.4753313362598419 |
| keywords[6].display_name | Parsing |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.47183161973953247 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/dependency-grammar |
| keywords[8].score | 0.45396503806114197 |
| keywords[8].display_name | Dependency grammar |
| keywords[9].id | https://openalex.org/keywords/domain |
| keywords[9].score | 0.43135562539100647 |
| keywords[9].display_name | Domain (mathematical analysis) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.4306308627128601 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/adaptation |
| keywords[11].score | 0.42883551120758057 |
| keywords[11].display_name | Adaptation (eye) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.36899662017822266 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.16756996512413025 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.08772870898246765 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2011.14459 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2011.14459 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2011.14459 |
| locations[1].id | doi:10.48550/arxiv.2011.14459 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2011.14459 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5077046363 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8854-4189 |
| authorships[0].author.display_name | Ishan Jindal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ishan Jindal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035493244 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ranit Aharonov |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ranit Aharonov |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047714914 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Siddhartha Brahma |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siddhartha Brahma |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076801334 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6918-4088 |
| authorships[3].author.display_name | Huaiyu Zhu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huaiyu Zhu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102944075 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-0814-4634 |
| authorships[4].author.display_name | Yunyao Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yunyao Li |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2011.14459 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-12-07T00:00:00 |
| display_name | Improved Semantic Role Labeling using Parameterized Neighborhood Memory Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W2251084681, https://openalex.org/W287510790, https://openalex.org/W2098784136, https://openalex.org/W2968543375, https://openalex.org/W2571817549, https://openalex.org/W1541975828, https://openalex.org/W2888625260, https://openalex.org/W3035970863, https://openalex.org/W4288558800, https://openalex.org/W2250525544 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2011.14459 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2011.14459 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2011.14459 |
| primary_location.id | pmh:oai:arXiv.org:2011.14459 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2011.14459 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2011.14459 |
| publication_date | 2020-11-29 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3104567865, https://openalex.org/W2155069789, https://openalex.org/W2571859396, https://openalex.org/W2126851059, https://openalex.org/W2786465559, https://openalex.org/W2962739339, https://openalex.org/W2963430354, https://openalex.org/W2964121744, https://openalex.org/W2988801569, https://openalex.org/W2963341956, https://openalex.org/W2962685351, https://openalex.org/W2600702321, https://openalex.org/W2962788148, https://openalex.org/W1985085323, https://openalex.org/W2890176538, https://openalex.org/W2963246595, https://openalex.org/W2971072618, https://openalex.org/W2151170651, https://openalex.org/W2251599843, https://openalex.org/W2740765036, https://openalex.org/W2798304389, https://openalex.org/W2963560594, https://openalex.org/W2963435215, https://openalex.org/W2964318358, https://openalex.org/W2038324640, https://openalex.org/W2962803243, https://openalex.org/W2397198482 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 41, 50, 60 |
| abstract_inverted_index.F1 | 123 |
| abstract_inverted_index.We | 39, 77 |
| abstract_inverted_index.by | 14 |
| abstract_inverted_index.in | 35, 59, 73 |
| abstract_inverted_index.of | 5, 31, 53, 57, 62, 87, 92, 94, 125 |
| abstract_inverted_index.on | 68, 119, 129 |
| abstract_inverted_index.to | 21 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.SRL | 85 |
| abstract_inverted_index.and | 64, 113, 127, 131 |
| abstract_inverted_index.for | 9, 110 |
| abstract_inverted_index.the | 6, 29, 54, 69, 74, 84, 88 |
| abstract_inverted_index.use | 30 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.PNMA | 81, 105 |
| abstract_inverted_index.base | 89 |
| abstract_inverted_index.best | 7 |
| abstract_inverted_index.both | 111 |
| abstract_inverted_index.deep | 36 |
| abstract_inverted_index.from | 103 |
| abstract_inverted_index.most | 70 |
| abstract_inverted_index.over | 107 |
| abstract_inverted_index.role | 11 |
| abstract_inverted_index.show | 79 |
| abstract_inverted_index.some | 4 |
| abstract_inverted_index.span | 112 |
| abstract_inverted_index.that | 17, 48, 80 |
| abstract_inverted_index.uses | 49 |
| abstract_inverted_index.with | 98 |
| abstract_inverted_index.word | 95, 100 |
| abstract_inverted_index.80.2, | 126 |
| abstract_inverted_index.84.97 | 128 |
| abstract_inverted_index.BERT, | 104 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.data. | 76 |
| abstract_inverted_index.makes | 65 |
| abstract_inverted_index.model | 90 |
| abstract_inverted_index.text, | 121 |
| abstract_inverted_index.types | 93 |
| abstract_inverted_index.(PNMA) | 46 |
| abstract_inverted_index.handle | 22 |
| abstract_inverted_index.memory | 32, 44, 61 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.models | 2, 109 |
| abstract_inverted_index.neural | 1, 37 |
| abstract_inverted_index.scores | 124 |
| abstract_inverted_index.tokens | 58 |
| abstract_inverted_index.Coupled | 97 |
| abstract_inverted_index.achieve | 3 |
| abstract_inverted_index.derived | 102 |
| abstract_inverted_index.models. | 38 |
| abstract_inverted_index.nearest | 19, 55 |
| abstract_inverted_index.parsing | 116 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.results | 8 |
| abstract_inverted_index.samples | 72 |
| abstract_inverted_index.similar | 71 |
| abstract_inverted_index.Inspired | 13 |
| abstract_inverted_index.adaptive | 45 |
| abstract_inverted_index.existing | 108 |
| abstract_inverted_index.improves | 83, 106 |
| abstract_inverted_index.learning | 16 |
| abstract_inverted_index.reaching | 122 |
| abstract_inverted_index.samples, | 26 |
| abstract_inverted_index.semantic | 10, 115 |
| abstract_inverted_index.training | 25, 75 |
| abstract_inverted_index.utilizes | 18 |
| abstract_inverted_index.CoNLL2009 | 132 |
| abstract_inverted_index.datasets, | 117, 133 |
| abstract_inverted_index.labeling. | 12 |
| abstract_inverted_index.neighbors | 20, 56 |
| abstract_inverted_index.CoNLL2005, | 130 |
| abstract_inverted_index.adaptation | 33 |
| abstract_inverted_index.dependency | 114 |
| abstract_inverted_index.embeddings | 101 |
| abstract_inverted_index.especially | 118 |
| abstract_inverted_index.techniques | 34 |
| abstract_inverted_index.activations | 63 |
| abstract_inverted_index.embeddings. | 96 |
| abstract_inverted_index.empirically | 78 |
| abstract_inverted_index.investigate | 28 |
| abstract_inverted_index.performance | 86 |
| abstract_inverted_index.predictions | 66 |
| abstract_inverted_index.consistently | 82 |
| abstract_inverted_index.irrespective | 91 |
| abstract_inverted_index.neighborhood | 43 |
| abstract_inverted_index.low-frequency | 23 |
| abstract_inverted_index.out-of-domain | 120 |
| abstract_inverted_index.parameterized | 42, 51 |
| abstract_inverted_index.respectively. | 134 |
| abstract_inverted_index.contextualized | 99 |
| abstract_inverted_index.instance-based | 15 |
| abstract_inverted_index.representation | 52 |
| abstract_inverted_index.context-specific | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |