Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/fpls.2024.1382416
Tomato is one of the most popular and most important food crops consumed globally. The quality and quantity of yield by tomato plants are affected by the impact made by various kinds of diseases. Therefore, it is essential to identify these diseases early so that it is possible to reduce the occurrences and effect of the diseases on tomato plants to improve the overall crop yield and to support the farmers. In the past, many research works have been carried out by applying the machine learning techniques to segment and classify the tomato leaf images. However, the existing machine learning-based classifiers are not able to detect the new types of diseases more accurately. On the other hand, deep learning-based classifiers with the support of swarm intelligence-based optimization techniques are able to enhance the classification accuracy, leading to the more effective and accurate detection of leaf diseases. This research paper proposes a new method for the accurate classification of tomato leaf diseases by harnessing the power of an ensemble model in a sample dataset of tomato plants, containing images pertaining to nine different types of leaf diseases. This research introduces an ensemble model with an exponential moving average function with temporal constraints and an enhanced weighted gradient optimizer that is integrated into fine-tuned Visual Geometry Group-16 (VGG-16) and Neural Architecture Search Network (NASNet) mobile training methods for providing improved learning and classification accuracy. The dataset used for the research consists of 10,000 tomato leaf images categorized into nine classes for training and validating the model and an additional 1,000 images reserved for testing the model. The results have been analyzed thoroughly and benchmarked with existing performance metrics, thus proving that the proposed approach gives better performance in terms of accuracy, loss, precision, recall, receiver operating characteristic curve, and F1-score with values of 98.7%, 4%, 97.9%, 98.6%, 99.97%, and 98.7%, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fpls.2024.1382416
- https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdf
- OA Status
- gold
- Cited By
- 13
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4397016754
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4397016754Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fpls.2024.1382416Digital Object Identifier
- Title
-
Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-17Full publication date if available
- Authors
-
V. Pandiyaraju, A. M. Senthil Kumar, Praveen Joe I R, Shravan Venkatraman, Sarthak Kumar, S A Aravintakshan, A Abeshek, A. KannanList of authors in order
- Landing page
-
https://doi.org/10.3389/fpls.2024.1382416Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Artificial neural network, Computer science, Pattern recognition (psychology), Machine learning, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4397016754 |
|---|---|
| doi | https://doi.org/10.3389/fpls.2024.1382416 |
| ids.doi | https://doi.org/10.3389/fpls.2024.1382416 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38828218 |
| ids.openalex | https://openalex.org/W4397016754 |
| fwci | 10.166638 |
| type | article |
| title | Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 1382416 |
| biblio.first_page | 1382416 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9882000088691711 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T12093 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9735000133514404 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Greenhouse Technology and Climate Control |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6345787048339844 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5263189673423767 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5256672501564026 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4847075939178467 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4665527045726776 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3889339566230774 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6345787048339844 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5263189673423767 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5256672501564026 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.4847075939178467 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4665527045726776 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3889339566230774 |
| keywords[5].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3389/fpls.2024.1382416 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2493613807 |
| locations[0].source.issn | 1664-462X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-462X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Plant Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Plant Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fpls.2024.1382416 |
| locations[1].id | pmid:38828218 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in plant science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38828218 |
| locations[2].id | pmh:oai:doaj.org/article:6f12cedbcd554c53932e5da8fd319e58 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Plant Science, Vol 15 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/6f12cedbcd554c53932e5da8fd319e58 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11140105 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Plant Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11140105 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5060650234 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | V. Pandiyaraju |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[0].institutions[0].id | https://openalex.org/I876193797 |
| authorships[0].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pandiyaraju V. |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[1].author.id | https://openalex.org/A5114194606 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | A. M. Senthil Kumar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[1].institutions[0].id | https://openalex.org/I876193797 |
| authorships[1].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A. M. Senthil Kumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[2].author.id | https://openalex.org/A5065030223 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2627-5294 |
| authorships[2].author.display_name | Praveen Joe I R |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[2].institutions[0].id | https://openalex.org/I876193797 |
| authorships[2].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joe I. R. Praveen |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[3].author.id | https://openalex.org/A5057268250 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shravan Venkatraman |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[3].institutions[0].id | https://openalex.org/I876193797 |
| authorships[3].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shravan Venkatraman |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[4].author.id | https://openalex.org/A5109717612 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Sarthak Kumar |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[4].institutions[0].id | https://openalex.org/I876193797 |
| authorships[4].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | S. Pavan Kumar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[5].author.id | https://openalex.org/A5098680684 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | S A Aravintakshan |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[5].institutions[0].id | https://openalex.org/I876193797 |
| authorships[5].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | S. A. Aravintakshan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[6].author.id | https://openalex.org/A5098680685 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | A Abeshek |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[6].institutions[0].id | https://openalex.org/I876193797 |
| authorships[6].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | A. Abeshek |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
| authorships[7].author.id | https://openalex.org/A5017525339 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3564-395X |
| authorships[7].author.display_name | A. Kannan |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India |
| authorships[7].institutions[0].id | https://openalex.org/I876193797 |
| authorships[7].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | A. Kannan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved tomato leaf disease classification through adaptive ensemble models with exponential moving average fusion and enhanced weighted gradient optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W2033914206 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fpls.2024.1382416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2493613807 |
| best_oa_location.source.issn | 1664-462X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-462X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Plant Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Plant Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fpls.2024.1382416 |
| primary_location.id | doi:10.3389/fpls.2024.1382416 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2493613807 |
| primary_location.source.issn | 1664-462X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-462X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Plant Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1382416/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Plant Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fpls.2024.1382416 |
| publication_date | 2024-05-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3158150050, https://openalex.org/W4390673803, https://openalex.org/W3016522735, https://openalex.org/W4205555581, https://openalex.org/W2944947651, https://openalex.org/W4220870220, https://openalex.org/W4385505199, https://openalex.org/W3180998648, https://openalex.org/W2079501665, https://openalex.org/W4321456965, https://openalex.org/W6794330880, https://openalex.org/W4386914133, https://openalex.org/W4221111998, https://openalex.org/W3185992107, https://openalex.org/W3007713639, https://openalex.org/W4387909063, https://openalex.org/W4390497073, https://openalex.org/W2579208594, https://openalex.org/W2977045868, https://openalex.org/W2050328546, https://openalex.org/W6647000017, https://openalex.org/W2739913959, https://openalex.org/W4226165565, https://openalex.org/W4309582104, https://openalex.org/W4280510413, https://openalex.org/W4283073201, https://openalex.org/W1540278001, https://openalex.org/W6854533520, https://openalex.org/W4250685322, https://openalex.org/W4297878068, https://openalex.org/W3083694765, https://openalex.org/W4296423656, https://openalex.org/W4386894087, https://openalex.org/W3194148782, https://openalex.org/W3018651684, https://openalex.org/W4388745405, https://openalex.org/W4288060330, https://openalex.org/W4387745802, https://openalex.org/W3000638380, https://openalex.org/W4239792181, https://openalex.org/W4283023598, https://openalex.org/W4313570172, https://openalex.org/W4382467984, https://openalex.org/W4386084351, https://openalex.org/W6728847454, https://openalex.org/W4221106578, https://openalex.org/W4303045583, https://openalex.org/W4328115538, https://openalex.org/W2548258044, https://openalex.org/W4296066923, https://openalex.org/W4310875085, https://openalex.org/W3109852393, https://openalex.org/W2426789731, https://openalex.org/W3159001133, https://openalex.org/W2733343268, https://openalex.org/W3124206517, https://openalex.org/W4375843272, https://openalex.org/W4310454508, https://openalex.org/W3004199509, https://openalex.org/W2540599045, https://openalex.org/W2420085356, https://openalex.org/W2800106282, https://openalex.org/W3158760582 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 150, 170 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.On | 113 |
| abstract_inverted_index.an | 166, 189, 193, 202, 255 |
| abstract_inverted_index.by | 20, 25, 29, 81, 161 |
| abstract_inverted_index.in | 169, 285 |
| abstract_inverted_index.is | 1, 36, 46, 208 |
| abstract_inverted_index.it | 35, 45 |
| abstract_inverted_index.of | 3, 18, 32, 54, 109, 123, 143, 157, 165, 173, 183, 239, 287, 300 |
| abstract_inverted_index.on | 57 |
| abstract_inverted_index.so | 43 |
| abstract_inverted_index.to | 38, 48, 60, 67, 87, 104, 130, 136, 179 |
| abstract_inverted_index.4%, | 302 |
| abstract_inverted_index.The | 14, 232, 264 |
| abstract_inverted_index.and | 7, 16, 52, 66, 89, 140, 201, 216, 229, 250, 254, 270, 296, 306 |
| abstract_inverted_index.are | 23, 101, 128 |
| abstract_inverted_index.for | 153, 225, 235, 248, 260 |
| abstract_inverted_index.new | 107, 151 |
| abstract_inverted_index.not | 102 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.out | 80 |
| abstract_inverted_index.the | 4, 26, 50, 55, 62, 69, 72, 83, 91, 96, 106, 114, 121, 132, 137, 154, 163, 236, 252, 262, 279 |
| abstract_inverted_index.This | 146, 186 |
| abstract_inverted_index.able | 103, 129 |
| abstract_inverted_index.been | 78, 267 |
| abstract_inverted_index.crop | 64 |
| abstract_inverted_index.deep | 117 |
| abstract_inverted_index.food | 10 |
| abstract_inverted_index.have | 77, 266 |
| abstract_inverted_index.into | 210, 245 |
| abstract_inverted_index.leaf | 93, 144, 159, 184, 242 |
| abstract_inverted_index.made | 28 |
| abstract_inverted_index.many | 74 |
| abstract_inverted_index.more | 111, 138 |
| abstract_inverted_index.most | 5, 8 |
| abstract_inverted_index.nine | 180, 246 |
| abstract_inverted_index.that | 44, 207, 278 |
| abstract_inverted_index.thus | 276 |
| abstract_inverted_index.used | 234 |
| abstract_inverted_index.with | 120, 192, 198, 272, 298 |
| abstract_inverted_index.1,000 | 257 |
| abstract_inverted_index.crops | 11 |
| abstract_inverted_index.early | 42 |
| abstract_inverted_index.gives | 282 |
| abstract_inverted_index.hand, | 116 |
| abstract_inverted_index.kinds | 31 |
| abstract_inverted_index.loss, | 289 |
| abstract_inverted_index.model | 168, 191, 253 |
| abstract_inverted_index.other | 115 |
| abstract_inverted_index.paper | 148 |
| abstract_inverted_index.past, | 73 |
| abstract_inverted_index.power | 164 |
| abstract_inverted_index.swarm | 124 |
| abstract_inverted_index.terms | 286 |
| abstract_inverted_index.these | 40 |
| abstract_inverted_index.types | 108, 182 |
| abstract_inverted_index.works | 76 |
| abstract_inverted_index.yield | 19, 65 |
| abstract_inverted_index.10,000 | 240 |
| abstract_inverted_index.97.9%, | 303 |
| abstract_inverted_index.98.6%, | 304 |
| abstract_inverted_index.98.7%, | 301, 307 |
| abstract_inverted_index.Neural | 217 |
| abstract_inverted_index.Search | 219 |
| abstract_inverted_index.Tomato | 0 |
| abstract_inverted_index.Visual | 212 |
| abstract_inverted_index.better | 283 |
| abstract_inverted_index.curve, | 295 |
| abstract_inverted_index.detect | 105 |
| abstract_inverted_index.effect | 53 |
| abstract_inverted_index.images | 177, 243, 258 |
| abstract_inverted_index.impact | 27 |
| abstract_inverted_index.method | 152 |
| abstract_inverted_index.mobile | 222 |
| abstract_inverted_index.model. | 263 |
| abstract_inverted_index.moving | 195 |
| abstract_inverted_index.plants | 22, 59 |
| abstract_inverted_index.reduce | 49 |
| abstract_inverted_index.sample | 171 |
| abstract_inverted_index.tomato | 21, 58, 92, 158, 174, 241 |
| abstract_inverted_index.values | 299 |
| abstract_inverted_index.99.97%, | 305 |
| abstract_inverted_index.Network | 220 |
| abstract_inverted_index.average | 196 |
| abstract_inverted_index.carried | 79 |
| abstract_inverted_index.classes | 247 |
| abstract_inverted_index.dataset | 172, 233 |
| abstract_inverted_index.enhance | 131 |
| abstract_inverted_index.images. | 94 |
| abstract_inverted_index.improve | 61 |
| abstract_inverted_index.leading | 135 |
| abstract_inverted_index.machine | 84, 98 |
| abstract_inverted_index.methods | 224 |
| abstract_inverted_index.overall | 63 |
| abstract_inverted_index.plants, | 175 |
| abstract_inverted_index.popular | 6 |
| abstract_inverted_index.proving | 277 |
| abstract_inverted_index.quality | 15 |
| abstract_inverted_index.recall, | 291 |
| abstract_inverted_index.results | 265 |
| abstract_inverted_index.segment | 88 |
| abstract_inverted_index.support | 68, 122 |
| abstract_inverted_index.testing | 261 |
| abstract_inverted_index.various | 30 |
| abstract_inverted_index.(NASNet) | 221 |
| abstract_inverted_index.(VGG-16) | 215 |
| abstract_inverted_index.F1-score | 297 |
| abstract_inverted_index.Geometry | 213 |
| abstract_inverted_index.Group-16 | 214 |
| abstract_inverted_index.However, | 95 |
| abstract_inverted_index.accurate | 141, 155 |
| abstract_inverted_index.affected | 24 |
| abstract_inverted_index.analyzed | 268 |
| abstract_inverted_index.applying | 82 |
| abstract_inverted_index.approach | 281 |
| abstract_inverted_index.classify | 90 |
| abstract_inverted_index.consists | 238 |
| abstract_inverted_index.consumed | 12 |
| abstract_inverted_index.diseases | 41, 56, 110, 160 |
| abstract_inverted_index.enhanced | 203 |
| abstract_inverted_index.ensemble | 167, 190 |
| abstract_inverted_index.existing | 97, 273 |
| abstract_inverted_index.farmers. | 70 |
| abstract_inverted_index.function | 197 |
| abstract_inverted_index.gradient | 205 |
| abstract_inverted_index.identify | 39 |
| abstract_inverted_index.improved | 227 |
| abstract_inverted_index.learning | 85, 228 |
| abstract_inverted_index.metrics, | 275 |
| abstract_inverted_index.possible | 47 |
| abstract_inverted_index.proposed | 280 |
| abstract_inverted_index.proposes | 149 |
| abstract_inverted_index.quantity | 17 |
| abstract_inverted_index.receiver | 292 |
| abstract_inverted_index.research | 75, 147, 187, 237 |
| abstract_inverted_index.reserved | 259 |
| abstract_inverted_index.temporal | 199 |
| abstract_inverted_index.training | 223, 249 |
| abstract_inverted_index.weighted | 204 |
| abstract_inverted_index.accuracy, | 134, 288 |
| abstract_inverted_index.accuracy. | 231 |
| abstract_inverted_index.detection | 142 |
| abstract_inverted_index.different | 181 |
| abstract_inverted_index.diseases. | 33, 145, 185 |
| abstract_inverted_index.effective | 139 |
| abstract_inverted_index.essential | 37 |
| abstract_inverted_index.globally. | 13 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.operating | 293 |
| abstract_inverted_index.optimizer | 206 |
| abstract_inverted_index.providing | 226 |
| abstract_inverted_index.Therefore, | 34 |
| abstract_inverted_index.additional | 256 |
| abstract_inverted_index.containing | 176 |
| abstract_inverted_index.fine-tuned | 211 |
| abstract_inverted_index.harnessing | 162 |
| abstract_inverted_index.integrated | 209 |
| abstract_inverted_index.introduces | 188 |
| abstract_inverted_index.pertaining | 178 |
| abstract_inverted_index.precision, | 290 |
| abstract_inverted_index.techniques | 86, 127 |
| abstract_inverted_index.thoroughly | 269 |
| abstract_inverted_index.validating | 251 |
| abstract_inverted_index.accurately. | 112 |
| abstract_inverted_index.benchmarked | 271 |
| abstract_inverted_index.categorized | 244 |
| abstract_inverted_index.classifiers | 100, 119 |
| abstract_inverted_index.constraints | 200 |
| abstract_inverted_index.exponential | 194 |
| abstract_inverted_index.occurrences | 51 |
| abstract_inverted_index.performance | 274, 284 |
| abstract_inverted_index.Architecture | 218 |
| abstract_inverted_index.optimization | 126 |
| abstract_inverted_index.respectively. | 308 |
| abstract_inverted_index.characteristic | 294 |
| abstract_inverted_index.classification | 133, 156, 230 |
| abstract_inverted_index.learning-based | 99, 118 |
| abstract_inverted_index.intelligence-based | 125 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5065030223 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I876193797 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.98128619 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |