Improved two-stream model for human action recognition Article Swipe
Yuxuan Zhao
,
Ka Lok Man
,
Jeremy S. Smith
,
Kamran Siddique
,
Sheng-Uei Guan
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1186/s13640-020-00501-x
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1186/s13640-020-00501-x
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13640-020-00501-x
- https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-x
- OA Status
- gold
- Cited By
- 61
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036534532
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036534532Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13640-020-00501-xDigital Object Identifier
- Title
-
Improved two-stream model for human action recognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-17Full publication date if available
- Authors
-
Yuxuan Zhao, Ka Lok Man, Jeremy S. Smith, Kamran Siddique, Sheng-Uei GuanList of authors in order
- Landing page
-
https://doi.org/10.1186/s13640-020-00501-xPublisher landing page
- PDF URL
-
https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-xDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-xDirect OA link when available
- Concepts
-
Computer science, Convolutional neural network, Artificial intelligence, Optical flow, RGB color model, Deep learning, Pattern recognition (psychology), Focus (optics), Action recognition, Pixel, Noise (video), Computer vision, Image (mathematics), Class (philosophy), Optics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
61Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 15, 2023: 13, 2022: 15, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036534532 |
|---|---|
| doi | https://doi.org/10.1186/s13640-020-00501-x |
| ids.doi | https://doi.org/10.1186/s13640-020-00501-x |
| ids.mag | 3036534532 |
| ids.openalex | https://openalex.org/W3036534532 |
| fwci | 4.19869272 |
| type | article |
| title | Improved two-stream model for human action recognition |
| biblio.issue | 1 |
| biblio.volume | 2020 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list.value | 1140 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1398 |
| apc_paid.value | 1140 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1398 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8510284423828125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7194908261299133 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.717655599117279 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C155542232 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6287907958030701 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[3].display_name | Optical flow |
| concepts[4].id | https://openalex.org/C82990744 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6043870449066162 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[4].display_name | RGB color model |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5136227011680603 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5106752514839172 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C192209626 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5060800909996033 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[7].display_name | Focus (optics) |
| concepts[8].id | https://openalex.org/C2987834672 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4622461795806885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4677630 |
| concepts[8].display_name | Action recognition |
| concepts[9].id | https://openalex.org/C160633673 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41948631405830383 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[9].display_name | Pixel |
| concepts[10].id | https://openalex.org/C99498987 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4154513478279114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[10].display_name | Noise (video) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37804484367370605 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.18650490045547485 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C2777212361 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[13].display_name | Class (philosophy) |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8510284423828125 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7194908261299133 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.717655599117279 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/optical-flow |
| keywords[3].score | 0.6287907958030701 |
| keywords[3].display_name | Optical flow |
| keywords[4].id | https://openalex.org/keywords/rgb-color-model |
| keywords[4].score | 0.6043870449066162 |
| keywords[4].display_name | RGB color model |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5136227011680603 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5106752514839172 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/focus |
| keywords[7].score | 0.5060800909996033 |
| keywords[7].display_name | Focus (optics) |
| keywords[8].id | https://openalex.org/keywords/action-recognition |
| keywords[8].score | 0.4622461795806885 |
| keywords[8].display_name | Action recognition |
| keywords[9].id | https://openalex.org/keywords/pixel |
| keywords[9].score | 0.41948631405830383 |
| keywords[9].display_name | Pixel |
| keywords[10].id | https://openalex.org/keywords/noise |
| keywords[10].score | 0.4154513478279114 |
| keywords[10].display_name | Noise (video) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.37804484367370605 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.18650490045547485 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1186/s13640-020-00501-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S153767265 |
| locations[0].source.issn | 1687-5176, 1687-5281 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1687-5176 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EURASIP Journal on Image and Video Processing |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-x |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EURASIP Journal on Image and Video Processing |
| locations[0].landing_page_url | https://doi.org/10.1186/s13640-020-00501-x |
| locations[1].id | pmh:oai:doaj.org/article:e68548e68cc74347aa457821c3196846 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | EURASIP Journal on Image and Video Processing, Vol 2020, Iss 1, Pp 1-9 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/e68548e68cc74347aa457821c3196846 |
| locations[2].id | pmh:oai:researchbank.swinburne.edu.au:5995c88b-5af2-4abf-8117-520e1738f9bf/1 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401157 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Swinburne Research Bank (Swinburne University of Technology) |
| locations[2].source.host_organization | https://openalex.org/I57093077 |
| locations[2].source.host_organization_name | Swinburne University of Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I57093077 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | EURASIP Journal on Image and Video Processing, Vol. 2020, no. 1 (Dec 2020), 24 |
| locations[2].landing_page_url | http://hdl.handle.net/1959.3/456309 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5035267308 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7506-1703 |
| authorships[0].author.display_name | Yuxuan Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I69356397 |
| authorships[0].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuxuan Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| authorships[1].author.id | https://openalex.org/A5075116069 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5787-4716 |
| authorships[1].author.display_name | Ka Lok Man |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I69356397 |
| authorships[1].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ka Lok Man |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| authorships[2].author.id | https://openalex.org/A5003757015 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0212-2365 |
| authorships[2].author.display_name | Jeremy S. Smith |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK |
| authorships[2].institutions[0].id | https://openalex.org/I146655781 |
| authorships[2].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Liverpool |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jeremy Smith |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK |
| authorships[3].author.id | https://openalex.org/A5077314174 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2286-1728 |
| authorships[3].author.display_name | Kamran Siddique |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134189 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information and Communication Technology, Xiamen University Malaysia, Sepang, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I4210134189 |
| authorships[3].institutions[0].ror | https://ror.org/0331wa828 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I191208505, https://openalex.org/I4210134189 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Xiamen University Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kamran Siddique |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information and Communication Technology, Xiamen University Malaysia, Sepang, Malaysia |
| authorships[4].author.id | https://openalex.org/A5065827089 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3968-9752 |
| authorships[4].author.display_name | Sheng-Uei Guan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I69356397 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I69356397 |
| authorships[4].institutions[0].ror | https://ror.org/03zmrmn05 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I69356397 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi’an Jiaotong-Liverpool University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sheng-Uei Guan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Software Engineering, Xi'an Jiaotong-Liverpool University, Ren'ai Road, Suzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-x |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improved two-stream model for human action recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W2762689969, https://openalex.org/W2004108207, https://openalex.org/W2901551566, https://openalex.org/W4297270893, https://openalex.org/W2577671007, https://openalex.org/W1591216093, https://openalex.org/W2912100719, https://openalex.org/W2963330455, https://openalex.org/W3091300685, https://openalex.org/W2331280411 |
| cited_by_count | 61 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 15 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1186/s13640-020-00501-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S153767265 |
| best_oa_location.source.issn | 1687-5176, 1687-5281 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1687-5176 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EURASIP Journal on Image and Video Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-x |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EURASIP Journal on Image and Video Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13640-020-00501-x |
| primary_location.id | doi:10.1186/s13640-020-00501-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S153767265 |
| primary_location.source.issn | 1687-5176, 1687-5281 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1687-5176 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EURASIP Journal on Image and Video Processing |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-020-00501-x |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EURASIP Journal on Image and Video Processing |
| primary_location.landing_page_url | https://doi.org/10.1186/s13640-020-00501-x |
| publication_date | 2020-06-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2134266767, https://openalex.org/W2917819557, https://openalex.org/W2096691069, https://openalex.org/W2105101328, https://openalex.org/W1983364832, https://openalex.org/W2618530766, https://openalex.org/W1977814411, https://openalex.org/W2951183276, https://openalex.org/W2082311728, https://openalex.org/W2108598243, https://openalex.org/W2064675550, https://openalex.org/W2963446712, https://openalex.org/W6847397134, https://openalex.org/W2738029666, https://openalex.org/W2964350391, https://openalex.org/W1522734439, https://openalex.org/W2963524571, https://openalex.org/W2507009361, https://openalex.org/W3010074710, https://openalex.org/W2793188496, https://openalex.org/W2507765654, https://openalex.org/W1686810756, https://openalex.org/W3104323038, https://openalex.org/W24089286, https://openalex.org/W1947481528 |
| referenced_works_count | 25 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.95059674 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |