Improvement of feature preservation in high efficiency video coding Article Swipe
Feature information is known as interest points (keypoints) in an image which is very useful information for video analytic functions such as object detection and tracking, video classification, etc. Due to the characteristic of video coding, it is exploited following human vision system where high frequency component could be removed for better compression. Thus, it can affect to the keypoints, which mostly are the edge information. As a result, with less number of keypoints left, this affects the accuracy of video analytics. To solve this problem, this thesis presents an algorithm to preserve feature information of reconstructed video in the high efficiency video coding (HEVC). Scale-Invariant Feature Transform (SIFT) is chosen to extract the keypoints from raw video sequence. We then consider keypoints as an indicator of the importance of the largest coding unit (LCU). Adaptive LCU selection is defined to determine LCU into two different groups, important LCU group (IMLCU) and non-important LCU group (Non-IMLCU). Moreover, two different bit allocations are generated in rate control to each group based on coding mode, Intra or Inter mode, to achieve the target bit rate and also to keep the feature information. The experimental results show that our proposed algorithm can maintain more keypoints compared to HEVC reference software at the same bitrate based on the peak signal-to-noise ratio (PSNR) and SIFT similarity computation.
Related Topics
- Type
- dissertation
- Language
- en
- Landing Page
- https://doi.org/10.58837/chula.the.2016.1517
- http://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdf
- OA Status
- gold
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388716509
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388716509Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58837/chula.the.2016.1517Digital Object Identifier
- Title
-
Improvement of feature preservation in high efficiency video codingWork title
- Type
-
dissertationOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Sovann ChenList of authors in order
- Landing page
-
https://doi.org/10.58837/chula.the.2016.1517Publisher landing page
- PDF URL
-
https://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdfDirect OA link when available
- Concepts
-
Scale-invariant feature transform, Computer science, Artificial intelligence, Video tracking, Computer vision, Coding (social sciences), Multiview Video Coding, Algorithmic efficiency, Coding tree unit, Peak signal-to-noise ratio, Pattern recognition (psychology), Feature extraction, Mathematics, Algorithm, Video processing, Image (mathematics), Decoding methods, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388716509 |
|---|---|
| doi | https://doi.org/10.58837/chula.the.2016.1517 |
| ids.doi | https://doi.org/10.58837/chula.the.2016.1517 |
| ids.openalex | https://openalex.org/W4388716509 |
| fwci | |
| type | dissertation |
| title | Improvement of feature preservation in high efficiency video coding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10741 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Video Coding and Compression Technologies |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61265191 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7140011787414551 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q767770 |
| concepts[0].display_name | Scale-invariant feature transform |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6330820322036743 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6287026405334473 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C202474056 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5785809755325317 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1931635 |
| concepts[3].display_name | Video tracking |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5589033365249634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C179518139 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5311911106109619 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[5].display_name | Coding (social sciences) |
| concepts[6].id | https://openalex.org/C23431618 |
| concepts[6].level | 4 |
| concepts[6].score | 0.49404123425483704 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1404672 |
| concepts[6].display_name | Multiview Video Coding |
| concepts[7].id | https://openalex.org/C116709606 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48776084184646606 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1296251 |
| concepts[7].display_name | Algorithmic efficiency |
| concepts[8].id | https://openalex.org/C190750250 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42979907989501953 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q13533439 |
| concepts[8].display_name | Coding tree unit |
| concepts[9].id | https://openalex.org/C154579607 |
| concepts[9].level | 3 |
| concepts[9].score | 0.425731360912323 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3373850 |
| concepts[9].display_name | Peak signal-to-noise ratio |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3898366391658783 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C52622490 |
| concepts[11].level | 2 |
| concepts[11].score | 0.268271267414093 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[11].display_name | Feature extraction |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.23702052235603333 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1799018681049347 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C65483669 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1516210436820984 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3536669 |
| concepts[14].display_name | Video processing |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.11035004258155823 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C57273362 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[16].display_name | Decoding methods |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/scale-invariant-feature-transform |
| keywords[0].score | 0.7140011787414551 |
| keywords[0].display_name | Scale-invariant feature transform |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6330820322036743 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6287026405334473 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/video-tracking |
| keywords[3].score | 0.5785809755325317 |
| keywords[3].display_name | Video tracking |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5589033365249634 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/coding |
| keywords[5].score | 0.5311911106109619 |
| keywords[5].display_name | Coding (social sciences) |
| keywords[6].id | https://openalex.org/keywords/multiview-video-coding |
| keywords[6].score | 0.49404123425483704 |
| keywords[6].display_name | Multiview Video Coding |
| keywords[7].id | https://openalex.org/keywords/algorithmic-efficiency |
| keywords[7].score | 0.48776084184646606 |
| keywords[7].display_name | Algorithmic efficiency |
| keywords[8].id | https://openalex.org/keywords/coding-tree-unit |
| keywords[8].score | 0.42979907989501953 |
| keywords[8].display_name | Coding tree unit |
| keywords[9].id | https://openalex.org/keywords/peak-signal-to-noise-ratio |
| keywords[9].score | 0.425731360912323 |
| keywords[9].display_name | Peak signal-to-noise ratio |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3898366391658783 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/feature-extraction |
| keywords[11].score | 0.268271267414093 |
| keywords[11].display_name | Feature extraction |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.23702052235603333 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.1799018681049347 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/video-processing |
| keywords[14].score | 0.1516210436820984 |
| keywords[14].display_name | Video processing |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.11035004258155823 |
| keywords[15].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.58837/chula.the.2016.1517 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | http://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | dissertation |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.58837/chula.the.2016.1517 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081485650 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sovann Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sovann Chen |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-16T00:00:00 |
| display_name | Improvement of feature preservation in high efficiency video coding |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2539891235, https://openalex.org/W2072993124, https://openalex.org/W3105214063, https://openalex.org/W19058378, https://openalex.org/W2183075350, https://openalex.org/W1579233721, https://openalex.org/W2019893573, https://openalex.org/W2098766434, https://openalex.org/W2612222456, https://openalex.org/W4207059794 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.58837/chula.the.2016.1517 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | http://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | dissertation |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.58837/chula.the.2016.1517 |
| primary_location.id | doi:10.58837/chula.the.2016.1517 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | http://cuir.car.chula.ac.th/bitstream/123456789/55203/1/5870290221.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | dissertation |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.58837/chula.the.2016.1517 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2257934238, https://openalex.org/W2146395539, https://openalex.org/W6680751073, https://openalex.org/W2043292349, https://openalex.org/W6669193425, https://openalex.org/W2103975552, https://openalex.org/W2151103935, https://openalex.org/W4243493583, https://openalex.org/W2052894923, https://openalex.org/W796261102, https://openalex.org/W2099909565, https://openalex.org/W2564255882, https://openalex.org/W1998100978, https://openalex.org/W2067815157, https://openalex.org/W2140199336, https://openalex.org/W2964065606 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 67 |
| abstract_inverted_index.As | 66 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.We | 119 |
| abstract_inverted_index.an | 9, 89, 124 |
| abstract_inverted_index.as | 4, 21, 123 |
| abstract_inverted_index.at | 207 |
| abstract_inverted_index.be | 48 |
| abstract_inverted_index.in | 8, 98, 163 |
| abstract_inverted_index.is | 2, 12, 37, 109, 138 |
| abstract_inverted_index.it | 36, 54 |
| abstract_inverted_index.of | 33, 72, 79, 95, 126, 129 |
| abstract_inverted_index.on | 170, 212 |
| abstract_inverted_index.or | 174 |
| abstract_inverted_index.to | 30, 57, 91, 111, 140, 166, 177, 185, 203 |
| abstract_inverted_index.Due | 29 |
| abstract_inverted_index.LCU | 136, 142, 148, 153 |
| abstract_inverted_index.The | 190 |
| abstract_inverted_index.and | 24, 151, 183, 218 |
| abstract_inverted_index.are | 62, 161 |
| abstract_inverted_index.bit | 159, 181 |
| abstract_inverted_index.can | 55, 198 |
| abstract_inverted_index.for | 16, 50 |
| abstract_inverted_index.our | 195 |
| abstract_inverted_index.raw | 116 |
| abstract_inverted_index.the | 31, 58, 63, 77, 99, 113, 127, 130, 179, 187, 208, 213 |
| abstract_inverted_index.two | 144, 157 |
| abstract_inverted_index.HEVC | 204 |
| abstract_inverted_index.SIFT | 219 |
| abstract_inverted_index.also | 184 |
| abstract_inverted_index.each | 167 |
| abstract_inverted_index.edge | 64 |
| abstract_inverted_index.etc. | 28 |
| abstract_inverted_index.from | 115 |
| abstract_inverted_index.high | 44, 100 |
| abstract_inverted_index.into | 143 |
| abstract_inverted_index.keep | 186 |
| abstract_inverted_index.less | 70 |
| abstract_inverted_index.more | 200 |
| abstract_inverted_index.peak | 214 |
| abstract_inverted_index.rate | 164, 182 |
| abstract_inverted_index.same | 209 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.such | 20 |
| abstract_inverted_index.that | 194 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.this | 75, 84, 86 |
| abstract_inverted_index.unit | 133 |
| abstract_inverted_index.very | 13 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.Inter | 175 |
| abstract_inverted_index.Intra | 173 |
| abstract_inverted_index.Thus, | 53 |
| abstract_inverted_index.based | 169, 211 |
| abstract_inverted_index.could | 47 |
| abstract_inverted_index.group | 149, 154, 168 |
| abstract_inverted_index.human | 40 |
| abstract_inverted_index.image | 10 |
| abstract_inverted_index.known | 3 |
| abstract_inverted_index.left, | 74 |
| abstract_inverted_index.mode, | 172, 176 |
| abstract_inverted_index.ratio | 216 |
| abstract_inverted_index.solve | 83 |
| abstract_inverted_index.video | 17, 26, 34, 80, 97, 102, 117 |
| abstract_inverted_index.where | 43 |
| abstract_inverted_index.which | 11, 60 |
| abstract_inverted_index.(LCU). | 134 |
| abstract_inverted_index.(PSNR) | 217 |
| abstract_inverted_index.(SIFT) | 108 |
| abstract_inverted_index.affect | 56 |
| abstract_inverted_index.better | 51 |
| abstract_inverted_index.chosen | 110 |
| abstract_inverted_index.coding | 103, 132, 171 |
| abstract_inverted_index.mostly | 61 |
| abstract_inverted_index.number | 71 |
| abstract_inverted_index.object | 22 |
| abstract_inverted_index.points | 6 |
| abstract_inverted_index.system | 42 |
| abstract_inverted_index.target | 180 |
| abstract_inverted_index.thesis | 87 |
| abstract_inverted_index.useful | 14 |
| abstract_inverted_index.vision | 41 |
| abstract_inverted_index.(HEVC). | 104 |
| abstract_inverted_index.(IMLCU) | 150 |
| abstract_inverted_index.Feature | 0, 106 |
| abstract_inverted_index.achieve | 178 |
| abstract_inverted_index.affects | 76 |
| abstract_inverted_index.bitrate | 210 |
| abstract_inverted_index.coding, | 35 |
| abstract_inverted_index.control | 165 |
| abstract_inverted_index.defined | 139 |
| abstract_inverted_index.extract | 112 |
| abstract_inverted_index.feature | 93, 188 |
| abstract_inverted_index.groups, | 146 |
| abstract_inverted_index.largest | 131 |
| abstract_inverted_index.removed | 49 |
| abstract_inverted_index.result, | 68 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.Adaptive | 135 |
| abstract_inverted_index.accuracy | 78 |
| abstract_inverted_index.analytic | 18 |
| abstract_inverted_index.compared | 202 |
| abstract_inverted_index.consider | 121 |
| abstract_inverted_index.interest | 5 |
| abstract_inverted_index.maintain | 199 |
| abstract_inverted_index.presents | 88 |
| abstract_inverted_index.preserve | 92 |
| abstract_inverted_index.problem, | 85 |
| abstract_inverted_index.proposed | 196 |
| abstract_inverted_index.software | 206 |
| abstract_inverted_index.Moreover, | 156 |
| abstract_inverted_index.Transform | 107 |
| abstract_inverted_index.algorithm | 90, 197 |
| abstract_inverted_index.component | 46 |
| abstract_inverted_index.detection | 23 |
| abstract_inverted_index.determine | 141 |
| abstract_inverted_index.different | 145, 158 |
| abstract_inverted_index.exploited | 38 |
| abstract_inverted_index.following | 39 |
| abstract_inverted_index.frequency | 45 |
| abstract_inverted_index.functions | 19 |
| abstract_inverted_index.generated | 162 |
| abstract_inverted_index.important | 147 |
| abstract_inverted_index.indicator | 125 |
| abstract_inverted_index.keypoints | 73, 114, 122, 201 |
| abstract_inverted_index.reference | 205 |
| abstract_inverted_index.selection | 137 |
| abstract_inverted_index.sequence. | 118 |
| abstract_inverted_index.tracking, | 25 |
| abstract_inverted_index.analytics. | 81 |
| abstract_inverted_index.efficiency | 101 |
| abstract_inverted_index.importance | 128 |
| abstract_inverted_index.keypoints, | 59 |
| abstract_inverted_index.similarity | 220 |
| abstract_inverted_index.(keypoints) | 7 |
| abstract_inverted_index.allocations | 160 |
| abstract_inverted_index.information | 1, 15, 94 |
| abstract_inverted_index.(Non-IMLCU). | 155 |
| abstract_inverted_index.compression. | 52 |
| abstract_inverted_index.computation. | 221 |
| abstract_inverted_index.experimental | 191 |
| abstract_inverted_index.information. | 65, 189 |
| abstract_inverted_index.non-important | 152 |
| abstract_inverted_index.reconstructed | 96 |
| abstract_inverted_index.characteristic | 32 |
| abstract_inverted_index.Scale-Invariant | 105 |
| abstract_inverted_index.classification, | 27 |
| abstract_inverted_index.signal-to-noise | 215 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5081485650 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |