Improving Across-Dataset Brain Tissue Segmentation Using Transformer Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.08741
Brain tissue segmentation has demonstrated great utility in quantifying MRI data through Voxel-Based Morphometry and highlighting subtle structural changes associated with various conditions within the brain. However, manual segmentation is highly labor-intensive, and automated approaches have struggled due to properties inherent to MRI acquisition, leaving a great need for an effective segmentation tool. Despite the recent success of deep convolutional neural networks (CNNs) for brain tissue segmentation, many such solutions do not generalize well to new datasets, which is critical for a reliable solution. Transformers have demonstrated success in natural image segmentation and have recently been applied to 3D medical image segmentation tasks due to their ability to capture long-distance relationships in the input where the local receptive fields of CNNs struggle. This study introduces a novel CNN-Transformer hybrid architecture designed for brain tissue segmentation. We validate our model's performance across four multi-site T1w MRI datasets, covering different vendors, field strengths, scan parameters, time points, and neuropsychiatric conditions. In all situations, our model achieved the greatest generality and reliability. Out method is inherently robust and can serve as a valuable tool for brain-related T1w MRI studies. The code for the TABS network is available at: https://github.com/raovish6/TABS.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.08741
- https://arxiv.org/pdf/2201.08741
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221151536
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221151536Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.08741Digital Object Identifier
- Title
-
Improving Across-Dataset Brain Tissue Segmentation Using TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-21Full publication date if available
- Authors
-
Vishwanatha M. Rao, Zihan Wan, David J. Ma, Pin-Yu Lee, Ye Tian, Andrew F. Laine, Jia GuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.08741Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.08741Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.08741Direct OA link when available
- Concepts
-
Segmentation, Computer science, Artificial intelligence, Convolutional neural network, Voxel, Pattern recognition (psychology), Deep learning, Artificial neural network, Image segmentation, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221151536 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.08741 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.08741 |
| ids.openalex | https://openalex.org/W4221151536 |
| fwci | 0.1237918 |
| type | preprint |
| title | Improving Across-Dataset Brain Tissue Segmentation Using Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.83185875415802 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7591976523399353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6814349293708801 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5831697583198547 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C54170458 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5676847696304321 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[4].display_name | Voxel |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4647127389907837 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4478234350681305 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44430622458457947 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C124504099 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4201769232749939 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[8].display_name | Image segmentation |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34944361448287964 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.83185875415802 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7591976523399353 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6814349293708801 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5831697583198547 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/voxel |
| keywords[4].score | 0.5676847696304321 |
| keywords[4].display_name | Voxel |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4647127389907837 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4478234350681305 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.44430622458457947 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/image-segmentation |
| keywords[8].score | 0.4201769232749939 |
| keywords[8].display_name | Image segmentation |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.34944361448287964 |
| keywords[9].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.08741 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.08741 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.08741 |
| locations[1].id | doi:10.48550/arxiv.2201.08741 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.08741 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021906807 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0080-7299 |
| authorships[0].author.display_name | Vishwanatha M. Rao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rao, Vishwanatha M. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056288476 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zihan Wan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wan, Zihan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019998651 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | David J. Ma |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ma, David J. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001343701 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Pin-Yu Lee |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lee, Pin-Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057372511 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2183-1666 |
| authorships[4].author.display_name | Ye Tian |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tian, Ye |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5090489079 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3797-0628 |
| authorships[5].author.display_name | Andrew F. Laine |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Laine, Andrew F. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5043650123 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4803-0279 |
| authorships[6].author.display_name | Jia Guo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Guo, Jia |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.08741 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Across-Dataset Brain Tissue Segmentation Using Transformer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W3027020613, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3167935049, https://openalex.org/W3103566983, https://openalex.org/W3029198973, https://openalex.org/W1522196789 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.08741 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.08741 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.08741 |
| primary_location.id | pmh:oai:arXiv.org:2201.08741 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.08741 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.08741 |
| publication_date | 2022-01-21 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 45, 81, 125, 178 |
| abstract_inverted_index.3D | 98 |
| abstract_inverted_index.In | 158 |
| abstract_inverted_index.We | 135 |
| abstract_inverted_index.an | 49 |
| abstract_inverted_index.as | 177 |
| abstract_inverted_index.do | 70 |
| abstract_inverted_index.in | 7, 88, 111 |
| abstract_inverted_index.is | 29, 78, 171, 192 |
| abstract_inverted_index.of | 57, 119 |
| abstract_inverted_index.to | 38, 41, 74, 97, 104, 107 |
| abstract_inverted_index.MRI | 9, 42, 144, 184 |
| abstract_inverted_index.Out | 169 |
| abstract_inverted_index.T1w | 143, 183 |
| abstract_inverted_index.The | 186 |
| abstract_inverted_index.all | 159 |
| abstract_inverted_index.and | 14, 32, 92, 155, 167, 174 |
| abstract_inverted_index.at: | 194 |
| abstract_inverted_index.can | 175 |
| abstract_inverted_index.due | 37, 103 |
| abstract_inverted_index.for | 48, 63, 80, 131, 181, 188 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.new | 75 |
| abstract_inverted_index.not | 71 |
| abstract_inverted_index.our | 137, 161 |
| abstract_inverted_index.the | 24, 54, 112, 115, 164, 189 |
| abstract_inverted_index.CNNs | 120 |
| abstract_inverted_index.TABS | 190 |
| abstract_inverted_index.This | 122 |
| abstract_inverted_index.been | 95 |
| abstract_inverted_index.code | 187 |
| abstract_inverted_index.data | 10 |
| abstract_inverted_index.deep | 58 |
| abstract_inverted_index.four | 141 |
| abstract_inverted_index.have | 35, 85, 93 |
| abstract_inverted_index.many | 67 |
| abstract_inverted_index.need | 47 |
| abstract_inverted_index.scan | 151 |
| abstract_inverted_index.such | 68 |
| abstract_inverted_index.time | 153 |
| abstract_inverted_index.tool | 180 |
| abstract_inverted_index.well | 73 |
| abstract_inverted_index.with | 20 |
| abstract_inverted_index.Brain | 0 |
| abstract_inverted_index.brain | 64, 132 |
| abstract_inverted_index.field | 149 |
| abstract_inverted_index.great | 5, 46 |
| abstract_inverted_index.image | 90, 100 |
| abstract_inverted_index.input | 113 |
| abstract_inverted_index.local | 116 |
| abstract_inverted_index.model | 162 |
| abstract_inverted_index.novel | 126 |
| abstract_inverted_index.serve | 176 |
| abstract_inverted_index.study | 123 |
| abstract_inverted_index.tasks | 102 |
| abstract_inverted_index.their | 105 |
| abstract_inverted_index.tool. | 52 |
| abstract_inverted_index.where | 114 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.(CNNs) | 62 |
| abstract_inverted_index.across | 140 |
| abstract_inverted_index.brain. | 25 |
| abstract_inverted_index.fields | 118 |
| abstract_inverted_index.highly | 30 |
| abstract_inverted_index.hybrid | 128 |
| abstract_inverted_index.manual | 27 |
| abstract_inverted_index.method | 170 |
| abstract_inverted_index.neural | 60 |
| abstract_inverted_index.recent | 55 |
| abstract_inverted_index.robust | 173 |
| abstract_inverted_index.subtle | 16 |
| abstract_inverted_index.tissue | 1, 65, 133 |
| abstract_inverted_index.within | 23 |
| abstract_inverted_index.Despite | 53 |
| abstract_inverted_index.ability | 106 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.capture | 108 |
| abstract_inverted_index.changes | 18 |
| abstract_inverted_index.leaving | 44 |
| abstract_inverted_index.medical | 99 |
| abstract_inverted_index.model's | 138 |
| abstract_inverted_index.natural | 89 |
| abstract_inverted_index.network | 191 |
| abstract_inverted_index.points, | 154 |
| abstract_inverted_index.success | 56, 87 |
| abstract_inverted_index.through | 11 |
| abstract_inverted_index.utility | 6 |
| abstract_inverted_index.various | 21 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.achieved | 163 |
| abstract_inverted_index.covering | 146 |
| abstract_inverted_index.critical | 79 |
| abstract_inverted_index.designed | 130 |
| abstract_inverted_index.greatest | 165 |
| abstract_inverted_index.inherent | 40 |
| abstract_inverted_index.networks | 61 |
| abstract_inverted_index.recently | 94 |
| abstract_inverted_index.reliable | 82 |
| abstract_inverted_index.studies. | 185 |
| abstract_inverted_index.validate | 136 |
| abstract_inverted_index.valuable | 179 |
| abstract_inverted_index.vendors, | 148 |
| abstract_inverted_index.automated | 33 |
| abstract_inverted_index.available | 193 |
| abstract_inverted_index.datasets, | 76, 145 |
| abstract_inverted_index.different | 147 |
| abstract_inverted_index.effective | 50 |
| abstract_inverted_index.receptive | 117 |
| abstract_inverted_index.solution. | 83 |
| abstract_inverted_index.solutions | 69 |
| abstract_inverted_index.struggle. | 121 |
| abstract_inverted_index.struggled | 36 |
| abstract_inverted_index.approaches | 34 |
| abstract_inverted_index.associated | 19 |
| abstract_inverted_index.conditions | 22 |
| abstract_inverted_index.generality | 166 |
| abstract_inverted_index.generalize | 72 |
| abstract_inverted_index.inherently | 172 |
| abstract_inverted_index.introduces | 124 |
| abstract_inverted_index.multi-site | 142 |
| abstract_inverted_index.properties | 39 |
| abstract_inverted_index.strengths, | 150 |
| abstract_inverted_index.structural | 17 |
| abstract_inverted_index.Morphometry | 13 |
| abstract_inverted_index.Voxel-Based | 12 |
| abstract_inverted_index.conditions. | 157 |
| abstract_inverted_index.parameters, | 152 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.quantifying | 8 |
| abstract_inverted_index.situations, | 160 |
| abstract_inverted_index.Transformers | 84 |
| abstract_inverted_index.acquisition, | 43 |
| abstract_inverted_index.architecture | 129 |
| abstract_inverted_index.demonstrated | 4, 86 |
| abstract_inverted_index.highlighting | 15 |
| abstract_inverted_index.reliability. | 168 |
| abstract_inverted_index.segmentation | 2, 28, 51, 91, 101 |
| abstract_inverted_index.brain-related | 182 |
| abstract_inverted_index.convolutional | 59 |
| abstract_inverted_index.long-distance | 109 |
| abstract_inverted_index.relationships | 110 |
| abstract_inverted_index.segmentation, | 66 |
| abstract_inverted_index.segmentation. | 134 |
| abstract_inverted_index.CNN-Transformer | 127 |
| abstract_inverted_index.labor-intensive, | 31 |
| abstract_inverted_index.neuropsychiatric | 156 |
| abstract_inverted_index.https://github.com/raovish6/TABS. | 195 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.36453409 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |