Improving biomedical entity linking for complex entity mentions with LLM-based text simplification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/database/baae067
Large amounts of important medical information are captured in free-text documents in biomedical research and within healthcare systems, which can be made accessible through natural language processing (NLP). A key component in most biomedical NLP pipelines is entity linking, i.e. grounding textual mentions of named entities to a reference of medical concepts, usually derived from a terminology system, such as the Systematized Nomenclature of Medicine Clinical Terms. However, complex entity mentions, spanning multiple tokens, are notoriously hard to normalize due to the difficulty of finding appropriate candidate concepts. In this work, we propose an approach to preprocess such mentions for candidate generation, building upon recent advances in text simplification with generative large language models. We evaluate the feasibility of our method in the context of the entity linking track of the BioCreative VIII SympTEMIST shared task. We find that instructing the latest Generative Pre-trained Transformer model with a few-shot prompt for text simplification results in mention spans that are easier to normalize. Thus, we can improve recall during candidate generation by 2.9 percentage points compared to our baseline system, which achieved the best score in the original shared task evaluation. Furthermore, we show that this improvement in recall can be fully translated into top-1 accuracy through careful initialization of a subsequent reranking model. Our best system achieves an accuracy of 63.6% on the SympTEMIST test set. The proposed approach has been integrated into the open-source xMEN toolkit, which is available online via https://github.com/hpi-dhc/xmen.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/database/baae067
- OA Status
- gold
- Cited By
- 7
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401103265
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401103265Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/database/baae067Digital Object Identifier
- Title
-
Improving biomedical entity linking for complex entity mentions with LLM-based text simplificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Florian Borchert, Ignacio Llorca, Matthieu-P. SchapranowList of authors in order
- Landing page
-
https://doi.org/10.1093/database/baae067Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/database/baae067Direct OA link when available
- Concepts
-
Computer science, Information retrieval, Entity linking, Natural language processing, World Wide Web, Knowledge baseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401103265 |
|---|---|
| doi | https://doi.org/10.1093/database/baae067 |
| ids.doi | https://doi.org/10.1093/database/baae067 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39066514 |
| ids.openalex | https://openalex.org/W4401103265 |
| fwci | 3.36173058 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D009323 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Natural Language Processing |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D009323 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Natural Language Processing |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D009323 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Natural Language Processing |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009323 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Natural Language Processing |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D009323 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Natural Language Processing |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| type | article |
| title | Improving biomedical entity linking for complex entity mentions with LLM-based text simplification |
| biblio.issue | |
| biblio.volume | 2024 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11710 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Biomedical Text Mining and Ontologies |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 1415 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1735 |
| apc_paid.value | 1415 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1735 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7283205389976501 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23123220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5970075726509094 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[1].display_name | Information retrieval |
| concepts[2].id | https://openalex.org/C96711827 |
| concepts[2].level | 3 |
| concepts[2].score | 0.46908894181251526 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17012245 |
| concepts[2].display_name | Entity linking |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.46492457389831543 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C136764020 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3560243546962738 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[4].display_name | World Wide Web |
| concepts[5].id | https://openalex.org/C4554734 |
| concepts[5].level | 2 |
| concepts[5].score | 0.07147350907325745 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q593744 |
| concepts[5].display_name | Knowledge base |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7283205389976501 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/information-retrieval |
| keywords[1].score | 0.5970075726509094 |
| keywords[1].display_name | Information retrieval |
| keywords[2].id | https://openalex.org/keywords/entity-linking |
| keywords[2].score | 0.46908894181251526 |
| keywords[2].display_name | Entity linking |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.46492457389831543 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/world-wide-web |
| keywords[4].score | 0.3560243546962738 |
| keywords[4].display_name | World Wide Web |
| keywords[5].id | https://openalex.org/keywords/knowledge-base |
| keywords[5].score | 0.07147350907325745 |
| keywords[5].display_name | Knowledge base |
| language | en |
| locations[0].id | doi:10.1093/database/baae067 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201630 |
| locations[0].source.issn | 1758-0463 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1758-0463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Database |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Database |
| locations[0].landing_page_url | https://doi.org/10.1093/database/baae067 |
| locations[1].id | pmid:39066514 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Database : the journal of biological databases and curation |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39066514 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11281847 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Database (Oxford) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11281847 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5006643663 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1079-6500 |
| authorships[0].author.display_name | Florian Borchert |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[0].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I143288331 |
| authorships[0].institutions[0].ror | https://ror.org/058rn5r42 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Hasso Plattner Institute |
| authorships[0].institutions[1].id | https://openalex.org/I176453806 |
| authorships[0].institutions[1].ror | https://ror.org/03bnmw459 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I176453806 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | University of Potsdam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Florian Borchert |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| authorships[1].author.id | https://openalex.org/A5077519770 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-6256-1879 |
| authorships[1].author.display_name | Ignacio Llorca |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[1].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I143288331 |
| authorships[1].institutions[0].ror | https://ror.org/058rn5r42 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Hasso Plattner Institute |
| authorships[1].institutions[1].id | https://openalex.org/I176453806 |
| authorships[1].institutions[1].ror | https://ror.org/03bnmw459 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I176453806 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | University of Potsdam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ignacio Llorca |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| authorships[2].author.id | https://openalex.org/A5053012847 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6601-2942 |
| authorships[2].author.display_name | Matthieu-P. Schapranow |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[2].affiliations[0].raw_affiliation_string | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I143288331 |
| authorships[2].institutions[0].ror | https://ror.org/058rn5r42 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I143288331, https://openalex.org/I176453806 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Hasso Plattner Institute |
| authorships[2].institutions[1].id | https://openalex.org/I176453806 |
| authorships[2].institutions[1].ror | https://ror.org/03bnmw459 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I176453806 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University of Potsdam |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Matthieu-P Schapranow |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hasso Plattner Institute for Digital Engineering, University of Potsdam , Prof.-Dr.-Helmert-Straße 2-3, Potsdam 14482, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/database/baae067 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving biomedical entity linking for complex entity mentions with LLM-based text simplification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11710 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Biomedical Text Mining and Ontologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2485077425, https://openalex.org/W4390279576, https://openalex.org/W2098057544 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/database/baae067 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201630 |
| best_oa_location.source.issn | 1758-0463 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1758-0463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Database |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Database |
| best_oa_location.landing_page_url | https://doi.org/10.1093/database/baae067 |
| primary_location.id | doi:10.1093/database/baae067 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201630 |
| primary_location.source.issn | 1758-0463 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1758-0463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Database |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Database |
| primary_location.landing_page_url | https://doi.org/10.1093/database/baae067 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2912971066, https://openalex.org/W2002514548, https://openalex.org/W2404369708, https://openalex.org/W4311903220, https://openalex.org/W3032553678, https://openalex.org/W6859932045, https://openalex.org/W2576491980, https://openalex.org/W3014809049, https://openalex.org/W6840891171, https://openalex.org/W4381587418, https://openalex.org/W4391973028, https://openalex.org/W6810226671, https://openalex.org/W6858981608, https://openalex.org/W1747666062, https://openalex.org/W6856771802, https://openalex.org/W6948729738, https://openalex.org/W6713634263, https://openalex.org/W6751601522, https://openalex.org/W6838616034, https://openalex.org/W6759960650, https://openalex.org/W2159583324, https://openalex.org/W6784131931, https://openalex.org/W6783763837, https://openalex.org/W6769263558, https://openalex.org/W3046375318, https://openalex.org/W4200196700, https://openalex.org/W6840160128, https://openalex.org/W6967751204, https://openalex.org/W6911304643, https://openalex.org/W6845943790, https://openalex.org/W4394637965, https://openalex.org/W4283773284, https://openalex.org/W3164540570, https://openalex.org/W4223546521, https://openalex.org/W4287889463, https://openalex.org/W4285116174, https://openalex.org/W2801213160, https://openalex.org/W4389518747, https://openalex.org/W3104748221, https://openalex.org/W4389519296, https://openalex.org/W3035390927 |
| referenced_works_count | 41 |
| abstract_inverted_index.A | 29 |
| abstract_inverted_index.a | 48, 56, 148, 210 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.We | 115, 137 |
| abstract_inverted_index.an | 94, 218 |
| abstract_inverted_index.as | 60 |
| abstract_inverted_index.be | 21, 200 |
| abstract_inverted_index.by | 171 |
| abstract_inverted_index.in | 9, 12, 32, 107, 122, 155, 185, 197 |
| abstract_inverted_index.is | 37, 239 |
| abstract_inverted_index.of | 3, 44, 50, 64, 84, 119, 125, 130, 209, 220 |
| abstract_inverted_index.on | 222 |
| abstract_inverted_index.to | 47, 78, 81, 96, 161, 176 |
| abstract_inverted_index.we | 92, 164, 192 |
| abstract_inverted_index.2.9 | 172 |
| abstract_inverted_index.NLP | 35 |
| abstract_inverted_index.Our | 214 |
| abstract_inverted_index.The | 227 |
| abstract_inverted_index.and | 15 |
| abstract_inverted_index.are | 7, 75, 159 |
| abstract_inverted_index.can | 20, 165, 199 |
| abstract_inverted_index.due | 80 |
| abstract_inverted_index.for | 100, 151 |
| abstract_inverted_index.has | 230 |
| abstract_inverted_index.key | 30 |
| abstract_inverted_index.our | 120, 177 |
| abstract_inverted_index.the | 61, 82, 117, 123, 126, 131, 141, 182, 186, 223, 234 |
| abstract_inverted_index.via | 242 |
| abstract_inverted_index.VIII | 133 |
| abstract_inverted_index.been | 231 |
| abstract_inverted_index.best | 183, 215 |
| abstract_inverted_index.find | 138 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.hard | 77 |
| abstract_inverted_index.i.e. | 40 |
| abstract_inverted_index.into | 203, 233 |
| abstract_inverted_index.made | 22 |
| abstract_inverted_index.most | 33 |
| abstract_inverted_index.set. | 226 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.such | 59, 98 |
| abstract_inverted_index.task | 189 |
| abstract_inverted_index.test | 225 |
| abstract_inverted_index.text | 108, 152 |
| abstract_inverted_index.that | 139, 158, 194 |
| abstract_inverted_index.this | 90, 195 |
| abstract_inverted_index.upon | 104 |
| abstract_inverted_index.with | 110, 147 |
| abstract_inverted_index.xMEN | 236 |
| abstract_inverted_index.63.6% | 221 |
| abstract_inverted_index.Large | 1 |
| abstract_inverted_index.Thus, | 163 |
| abstract_inverted_index.fully | 201 |
| abstract_inverted_index.large | 112 |
| abstract_inverted_index.model | 146 |
| abstract_inverted_index.named | 45 |
| abstract_inverted_index.score | 184 |
| abstract_inverted_index.spans | 157 |
| abstract_inverted_index.task. | 136 |
| abstract_inverted_index.top-1 | 204 |
| abstract_inverted_index.track | 129 |
| abstract_inverted_index.which | 19, 180, 238 |
| abstract_inverted_index.work, | 91 |
| abstract_inverted_index.(NLP). | 28 |
| abstract_inverted_index.Terms. | 67 |
| abstract_inverted_index.during | 168 |
| abstract_inverted_index.easier | 160 |
| abstract_inverted_index.entity | 38, 70, 127 |
| abstract_inverted_index.latest | 142 |
| abstract_inverted_index.method | 121 |
| abstract_inverted_index.model. | 213 |
| abstract_inverted_index.online | 241 |
| abstract_inverted_index.points | 174 |
| abstract_inverted_index.prompt | 150 |
| abstract_inverted_index.recall | 167, 198 |
| abstract_inverted_index.recent | 105 |
| abstract_inverted_index.shared | 135, 188 |
| abstract_inverted_index.system | 216 |
| abstract_inverted_index.within | 16 |
| abstract_inverted_index.amounts | 2 |
| abstract_inverted_index.careful | 207 |
| abstract_inverted_index.complex | 69 |
| abstract_inverted_index.context | 124 |
| abstract_inverted_index.derived | 54 |
| abstract_inverted_index.finding | 85 |
| abstract_inverted_index.improve | 166 |
| abstract_inverted_index.linking | 128 |
| abstract_inverted_index.medical | 5, 51 |
| abstract_inverted_index.mention | 156 |
| abstract_inverted_index.models. | 114 |
| abstract_inverted_index.natural | 25 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.results | 154 |
| abstract_inverted_index.system, | 58, 179 |
| abstract_inverted_index.textual | 42 |
| abstract_inverted_index.through | 24, 206 |
| abstract_inverted_index.tokens, | 74 |
| abstract_inverted_index.usually | 53 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Clinical | 66 |
| abstract_inverted_index.However, | 68 |
| abstract_inverted_index.Medicine | 65 |
| abstract_inverted_index.accuracy | 205, 219 |
| abstract_inverted_index.achieved | 181 |
| abstract_inverted_index.achieves | 217 |
| abstract_inverted_index.advances | 106 |
| abstract_inverted_index.approach | 95, 229 |
| abstract_inverted_index.baseline | 178 |
| abstract_inverted_index.building | 103 |
| abstract_inverted_index.captured | 8 |
| abstract_inverted_index.compared | 175 |
| abstract_inverted_index.entities | 46 |
| abstract_inverted_index.evaluate | 116 |
| abstract_inverted_index.few-shot | 149 |
| abstract_inverted_index.language | 26, 113 |
| abstract_inverted_index.linking, | 39 |
| abstract_inverted_index.mentions | 43, 99 |
| abstract_inverted_index.multiple | 73 |
| abstract_inverted_index.original | 187 |
| abstract_inverted_index.proposed | 228 |
| abstract_inverted_index.research | 14 |
| abstract_inverted_index.spanning | 72 |
| abstract_inverted_index.systems, | 18 |
| abstract_inverted_index.toolkit, | 237 |
| abstract_inverted_index.available | 240 |
| abstract_inverted_index.candidate | 87, 101, 169 |
| abstract_inverted_index.component | 31 |
| abstract_inverted_index.concepts, | 52 |
| abstract_inverted_index.concepts. | 88 |
| abstract_inverted_index.documents | 11 |
| abstract_inverted_index.free-text | 10 |
| abstract_inverted_index.grounding | 41 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.mentions, | 71 |
| abstract_inverted_index.normalize | 79 |
| abstract_inverted_index.pipelines | 36 |
| abstract_inverted_index.reference | 49 |
| abstract_inverted_index.reranking | 212 |
| abstract_inverted_index.Generative | 143 |
| abstract_inverted_index.SympTEMIST | 134, 224 |
| abstract_inverted_index.accessible | 23 |
| abstract_inverted_index.biomedical | 13, 34 |
| abstract_inverted_index.difficulty | 83 |
| abstract_inverted_index.generation | 170 |
| abstract_inverted_index.generative | 111 |
| abstract_inverted_index.healthcare | 17 |
| abstract_inverted_index.integrated | 232 |
| abstract_inverted_index.normalize. | 162 |
| abstract_inverted_index.percentage | 173 |
| abstract_inverted_index.preprocess | 97 |
| abstract_inverted_index.processing | 27 |
| abstract_inverted_index.subsequent | 211 |
| abstract_inverted_index.translated | 202 |
| abstract_inverted_index.BioCreative | 132 |
| abstract_inverted_index.Pre-trained | 144 |
| abstract_inverted_index.Transformer | 145 |
| abstract_inverted_index.appropriate | 86 |
| abstract_inverted_index.evaluation. | 190 |
| abstract_inverted_index.feasibility | 118 |
| abstract_inverted_index.generation, | 102 |
| abstract_inverted_index.improvement | 196 |
| abstract_inverted_index.information | 6 |
| abstract_inverted_index.instructing | 140 |
| abstract_inverted_index.notoriously | 76 |
| abstract_inverted_index.open-source | 235 |
| abstract_inverted_index.terminology | 57 |
| abstract_inverted_index.Furthermore, | 191 |
| abstract_inverted_index.Nomenclature | 63 |
| abstract_inverted_index.Systematized | 62 |
| abstract_inverted_index.initialization | 208 |
| abstract_inverted_index.simplification | 109, 153 |
| abstract_inverted_index.https://github.com/hpi-dhc/xmen. | 243 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.88239605 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |