Improving Brain Tumor Segmentation with Data Augmentation Strategies Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.21467/proceedings.114.2
In the past decade, there has been a remarkable evolution of convolutional neural networks (CNN) for biomedical image processing. These improvements are inculcated in the basic deep learning-based models for computer-aided detection and prognosis of various ailments. But implementation of these CNN based networks is highly dependent on large data in case of supervised learning processes. This is needed to tackle overfitting issues which is a major concern in supervised techniques. Overfitting refers to the phenomenon when a network starts learning specific patterns of the input such that it fits well on the training data but leads to poor generalization abilities on unseen data. The accessibility of enormous quantity of data limits the field of medical domain research. This paper focuses on utility of data augmentation (DA) techniques, which is a well-recognized solution to the problem of limited data. The experiments were performed on the Brain Tumor Segmentation (BraTS) dataset which is available online. The results signify that different DA approaches have upgraded the accuracies for segmenting brain tumor boundaries using CNN based model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21467/proceedings.114.2
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3204868647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3204868647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21467/proceedings.114.2Digital Object Identifier
- Title
-
Improving Brain Tumor Segmentation with Data Augmentation StrategiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-22Full publication date if available
- Authors
-
Radhika Malhotra, Jasleen Saini, Barjinder Singh Saini, Savita GuptaList of authors in order
- Landing page
-
https://doi.org/10.21467/proceedings.114.2Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21467/proceedings.114.2Direct OA link when available
- Concepts
-
Overfitting, Computer science, Artificial intelligence, Convolutional neural network, Segmentation, Machine learning, Market segmentation, Generalization, Deep learning, Field (mathematics), Domain (mathematical analysis), Artificial neural network, Pattern recognition (psychology), Marketing, Mathematics, Business, Mathematical analysis, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3204868647 |
|---|---|
| doi | https://doi.org/10.21467/proceedings.114.2 |
| ids.doi | https://doi.org/10.21467/proceedings.114.2 |
| ids.mag | 3204868647 |
| ids.openalex | https://openalex.org/W3204868647 |
| fwci | 0.0 |
| type | article |
| title | Improving Brain Tumor Segmentation with Data Augmentation Strategies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 11 |
| biblio.first_page | 7 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9714000225067139 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.965499997138977 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.955596387386322 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7909588813781738 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7451720833778381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6931099891662598 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6388814449310303 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6289991140365601 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C125308379 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6199973821640015 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q363057 |
| concepts[6].display_name | Market segmentation |
| concepts[7].id | https://openalex.org/C177148314 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5969350337982178 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[7].display_name | Generalization |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.542494535446167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C9652623 |
| concepts[9].level | 2 |
| concepts[9].score | 0.493960440158844 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[9].display_name | Field (mathematics) |
| concepts[10].id | https://openalex.org/C36503486 |
| concepts[10].level | 2 |
| concepts[10].score | 0.48205122351646423 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[10].display_name | Domain (mathematical analysis) |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4009644389152527 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3675262928009033 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C162853370 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[13].display_name | Marketing |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C144133560 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[15].display_name | Business |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.955596387386322 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7909588813781738 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7451720833778381 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6931099891662598 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.6388814449310303 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.6289991140365601 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/market-segmentation |
| keywords[6].score | 0.6199973821640015 |
| keywords[6].display_name | Market segmentation |
| keywords[7].id | https://openalex.org/keywords/generalization |
| keywords[7].score | 0.5969350337982178 |
| keywords[7].display_name | Generalization |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.542494535446167 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/field |
| keywords[9].score | 0.493960440158844 |
| keywords[9].display_name | Field (mathematics) |
| keywords[10].id | https://openalex.org/keywords/domain |
| keywords[10].score | 0.48205122351646423 |
| keywords[10].display_name | Domain (mathematical analysis) |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.4009644389152527 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3675262928009033 |
| keywords[12].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.21467/proceedings.114.2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240747 |
| locations[0].source.issn | 2582-3922 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2582-3922 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIJR Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIJR Proceedings |
| locations[0].landing_page_url | https://doi.org/10.21467/proceedings.114.2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034615664 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4267-8974 |
| authorships[0].author.display_name | Radhika Malhotra |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70971781 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept of ECE Dr. B R Ambedkar NIT Jalandhar Jalandhar, India |
| authorships[0].institutions[0].id | https://openalex.org/I70971781 |
| authorships[0].institutions[0].ror | https://ror.org/03xt0bg88 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70971781 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Dr. B. R. Ambedkar National Institute of Technology Jalandhar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Radhika Malhotra |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept of ECE Dr. B R Ambedkar NIT Jalandhar Jalandhar, India |
| authorships[1].author.id | https://openalex.org/A5081011584 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jasleen Saini |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I51452335 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept of CSE UIET, Panjab University Chandigarh, India |
| authorships[1].institutions[0].id | https://openalex.org/I51452335 |
| authorships[1].institutions[0].ror | https://ror.org/04p2sbk06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51452335 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Panjab University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jasleen Saini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept of CSE UIET, Panjab University Chandigarh, India |
| authorships[2].author.id | https://openalex.org/A5057994698 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0932-6851 |
| authorships[2].author.display_name | Barjinder Singh Saini |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70971781 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept of ECE Dr. B R Ambedkar NIT Jalandhar Jalandhar, India |
| authorships[2].institutions[0].id | https://openalex.org/I70971781 |
| authorships[2].institutions[0].ror | https://ror.org/03xt0bg88 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70971781 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Dr. B. R. Ambedkar National Institute of Technology Jalandhar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Barjinder Singh Saini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept of ECE Dr. B R Ambedkar NIT Jalandhar Jalandhar, India |
| authorships[3].author.id | https://openalex.org/A5100331763 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5401-2208 |
| authorships[3].author.display_name | Savita Gupta |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I51452335 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept of CSE UIET, Panjab University Chandigarh, India |
| authorships[3].institutions[0].id | https://openalex.org/I51452335 |
| authorships[3].institutions[0].ror | https://ror.org/04p2sbk06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I51452335 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Panjab University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Savita Gupta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept of CSE UIET, Panjab University Chandigarh, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21467/proceedings.114.2 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Brain Tumor Segmentation with Data Augmentation Strategies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W1574414179, https://openalex.org/W4362597605, https://openalex.org/W3009056573, https://openalex.org/W3099765033, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21467/proceedings.114.2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240747 |
| best_oa_location.source.issn | 2582-3922 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2582-3922 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIJR Proceedings |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIJR Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.21467/proceedings.114.2 |
| primary_location.id | doi:10.21467/proceedings.114.2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240747 |
| primary_location.source.issn | 2582-3922 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2582-3922 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIJR Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIJR Proceedings |
| primary_location.landing_page_url | https://doi.org/10.21467/proceedings.114.2 |
| publication_date | 2021-09-22 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 65, 77, 130 |
| abstract_inverted_index.DA | 159 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.in | 23, 50, 68 |
| abstract_inverted_index.is | 44, 57, 64, 129, 151 |
| abstract_inverted_index.it | 88 |
| abstract_inverted_index.of | 10, 34, 39, 52, 83, 106, 109, 114, 123, 136 |
| abstract_inverted_index.on | 47, 91, 101, 121, 143 |
| abstract_inverted_index.to | 59, 73, 97, 133 |
| abstract_inverted_index.But | 37 |
| abstract_inverted_index.CNN | 41, 171 |
| abstract_inverted_index.The | 104, 139, 154 |
| abstract_inverted_index.and | 32 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.but | 95 |
| abstract_inverted_index.for | 15, 29, 165 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 1, 24, 74, 84, 92, 112, 134, 144, 163 |
| abstract_inverted_index.(DA) | 126 |
| abstract_inverted_index.This | 56, 118 |
| abstract_inverted_index.been | 6 |
| abstract_inverted_index.case | 51 |
| abstract_inverted_index.data | 49, 94, 110, 124 |
| abstract_inverted_index.deep | 26 |
| abstract_inverted_index.fits | 89 |
| abstract_inverted_index.have | 161 |
| abstract_inverted_index.past | 2 |
| abstract_inverted_index.poor | 98 |
| abstract_inverted_index.such | 86 |
| abstract_inverted_index.that | 87, 157 |
| abstract_inverted_index.well | 90 |
| abstract_inverted_index.were | 141 |
| abstract_inverted_index.when | 76 |
| abstract_inverted_index.(CNN) | 14 |
| abstract_inverted_index.Brain | 145 |
| abstract_inverted_index.These | 19 |
| abstract_inverted_index.Tumor | 146 |
| abstract_inverted_index.based | 42, 172 |
| abstract_inverted_index.basic | 25 |
| abstract_inverted_index.brain | 167 |
| abstract_inverted_index.data. | 103, 138 |
| abstract_inverted_index.field | 113 |
| abstract_inverted_index.image | 17 |
| abstract_inverted_index.input | 85 |
| abstract_inverted_index.large | 48 |
| abstract_inverted_index.leads | 96 |
| abstract_inverted_index.major | 66 |
| abstract_inverted_index.paper | 119 |
| abstract_inverted_index.there | 4 |
| abstract_inverted_index.these | 40 |
| abstract_inverted_index.tumor | 168 |
| abstract_inverted_index.using | 170 |
| abstract_inverted_index.which | 63, 128, 150 |
| abstract_inverted_index.domain | 116 |
| abstract_inverted_index.highly | 45 |
| abstract_inverted_index.issues | 62 |
| abstract_inverted_index.limits | 111 |
| abstract_inverted_index.model. | 173 |
| abstract_inverted_index.models | 28 |
| abstract_inverted_index.needed | 58 |
| abstract_inverted_index.neural | 12 |
| abstract_inverted_index.refers | 72 |
| abstract_inverted_index.starts | 79 |
| abstract_inverted_index.tackle | 60 |
| abstract_inverted_index.unseen | 102 |
| abstract_inverted_index.(BraTS) | 148 |
| abstract_inverted_index.concern | 67 |
| abstract_inverted_index.dataset | 149 |
| abstract_inverted_index.decade, | 3 |
| abstract_inverted_index.focuses | 120 |
| abstract_inverted_index.limited | 137 |
| abstract_inverted_index.medical | 115 |
| abstract_inverted_index.network | 78 |
| abstract_inverted_index.online. | 153 |
| abstract_inverted_index.problem | 135 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.signify | 156 |
| abstract_inverted_index.utility | 122 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.enormous | 107 |
| abstract_inverted_index.learning | 54, 80 |
| abstract_inverted_index.networks | 13, 43 |
| abstract_inverted_index.patterns | 82 |
| abstract_inverted_index.quantity | 108 |
| abstract_inverted_index.solution | 132 |
| abstract_inverted_index.specific | 81 |
| abstract_inverted_index.training | 93 |
| abstract_inverted_index.upgraded | 162 |
| abstract_inverted_index.abilities | 100 |
| abstract_inverted_index.ailments. | 36 |
| abstract_inverted_index.available | 152 |
| abstract_inverted_index.dependent | 46 |
| abstract_inverted_index.detection | 31 |
| abstract_inverted_index.different | 158 |
| abstract_inverted_index.evolution | 9 |
| abstract_inverted_index.performed | 142 |
| abstract_inverted_index.prognosis | 33 |
| abstract_inverted_index.research. | 117 |
| abstract_inverted_index.accuracies | 164 |
| abstract_inverted_index.approaches | 160 |
| abstract_inverted_index.biomedical | 16 |
| abstract_inverted_index.boundaries | 169 |
| abstract_inverted_index.inculcated | 22 |
| abstract_inverted_index.phenomenon | 75 |
| abstract_inverted_index.processes. | 55 |
| abstract_inverted_index.remarkable | 8 |
| abstract_inverted_index.segmenting | 166 |
| abstract_inverted_index.supervised | 53, 69 |
| abstract_inverted_index.Overfitting | 71 |
| abstract_inverted_index.experiments | 140 |
| abstract_inverted_index.overfitting | 61 |
| abstract_inverted_index.processing. | 18 |
| abstract_inverted_index.techniques, | 127 |
| abstract_inverted_index.techniques. | 70 |
| abstract_inverted_index.Segmentation | 147 |
| abstract_inverted_index.augmentation | 125 |
| abstract_inverted_index.improvements | 20 |
| abstract_inverted_index.accessibility | 105 |
| abstract_inverted_index.convolutional | 11 |
| abstract_inverted_index.computer-aided | 30 |
| abstract_inverted_index.generalization | 99 |
| abstract_inverted_index.implementation | 38 |
| abstract_inverted_index.learning-based | 27 |
| abstract_inverted_index.well-recognized | 131 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.1498146 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |