Improving Consumer Health Search with Field-Level Learning-to-Rank Techniques Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/info15110695
In the area of consumer health search (CHS), there is an increasing concern about returning topically relevant and understandable health information to the user. Besides being used to rank topically relevant documents, Learning to Rank (LTR) has also been used to promote understandability ranking. Traditionally, features coming from different document fields are joined together, limiting the performance of standard LTR, since field information plays an important role in promoting understandability ranking. In this paper, a novel field-level Learning-to-Rank (f-LTR) approach is proposed, and its application in CHS is investigated by developing thorough experiments on CLEF’ 2016–2018 eHealth IR data collections. An in-depth analysis of the effects of using f-LTR is provided, with experimental results suggesting that in LTR, title features are more effective than other field features in promoting understandability ranking. Moreover, the fused f-LTR model is compared to existing work, confirming the effectiveness of the methodology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/info15110695
- OA Status
- gold
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404024363
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404024363Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/info15110695Digital Object Identifier
- Title
-
Improving Consumer Health Search with Field-Level Learning-to-Rank TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-03Full publication date if available
- Authors
-
Hua Yang, Teresa GonçalvesList of authors in order
- Landing page
-
https://doi.org/10.3390/info15110695Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/info15110695Direct OA link when available
- Concepts
-
Field (mathematics), Rank (graph theory), Computer science, Psychology, Data science, Mathematics, Pure mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404024363 |
|---|---|
| doi | https://doi.org/10.3390/info15110695 |
| ids.doi | https://doi.org/10.3390/info15110695 |
| ids.openalex | https://openalex.org/W4404024363 |
| fwci | 0.0 |
| type | article |
| title | Improving Consumer Health Search with Field-Level Learning-to-Rank Techniques |
| biblio.issue | 11 |
| biblio.volume | 15 |
| biblio.last_page | 695 |
| biblio.first_page | 695 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9882000088691711 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T11161 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9842000007629395 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1406 |
| topics[1].subfield.display_name | Marketing |
| topics[1].display_name | Consumer Market Behavior and Pricing |
| topics[2].id | https://openalex.org/T10286 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9800000190734863 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Information Retrieval and Search Behavior |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C9652623 |
| concepts[0].level | 2 |
| concepts[0].score | 0.553102433681488 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[0].display_name | Field (mathematics) |
| concepts[1].id | https://openalex.org/C164226766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5509296655654907 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[1].display_name | Rank (graph theory) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.41047632694244385 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.37971481680870056 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3449175953865051 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2521269917488098 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C202444582 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[6].display_name | Pure mathematics |
| concepts[7].id | https://openalex.org/C114614502 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[7].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/field |
| keywords[0].score | 0.553102433681488 |
| keywords[0].display_name | Field (mathematics) |
| keywords[1].id | https://openalex.org/keywords/rank |
| keywords[1].score | 0.5509296655654907 |
| keywords[1].display_name | Rank (graph theory) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.41047632694244385 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.37971481680870056 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3449175953865051 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.2521269917488098 |
| keywords[5].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/info15110695 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219776 |
| locations[0].source.issn | 2078-2489 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2078-2489 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information |
| locations[0].landing_page_url | https://doi.org/10.3390/info15110695 |
| locations[1].id | pmh:oai:doaj.org/article:9dd8be20c52b492193eb16fbad81a721 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Information, Vol 15, Iss 11, p 695 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/9dd8be20c52b492193eb16fbad81a721 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5075065160 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6720-4831 |
| authorships[0].author.display_name | Hua Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I132586189 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[0].institutions[0].id | https://openalex.org/I132586189 |
| authorships[0].institutions[0].ror | https://ror.org/0360zcg91 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I132586189 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhongyuan University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hua Yang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China |
| authorships[1].author.id | https://openalex.org/A5085523573 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1323-0249 |
| authorships[1].author.display_name | Teresa Gonçalves |
| authorships[1].countries | PT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21803372 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Évora, 7000-671 Évora, Portugal |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I21803372 |
| authorships[1].affiliations[1].raw_affiliation_string | VISTA Lab, Algoritmi Center, University of Évora, 7000-671 Évora, Portugal |
| authorships[1].institutions[0].id | https://openalex.org/I21803372 |
| authorships[1].institutions[0].ror | https://ror.org/02gyps716 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21803372 |
| authorships[1].institutions[0].country_code | PT |
| authorships[1].institutions[0].display_name | University of Évora |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Teresa Gonçalves |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Évora, 7000-671 Évora, Portugal, VISTA Lab, Algoritmi Center, University of Évora, 7000-671 Évora, Portugal |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/info15110695 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Consumer Health Search with Field-Level Learning-to-Rank Techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9882000088691711 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/info15110695 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219776 |
| best_oa_location.source.issn | 2078-2489 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2078-2489 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/info15110695 |
| primary_location.id | doi:10.3390/info15110695 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219776 |
| primary_location.source.issn | 2078-2489 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2078-2489 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information |
| primary_location.landing_page_url | https://doi.org/10.3390/info15110695 |
| publication_date | 2024-11-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4327644568, https://openalex.org/W4386798120, https://openalex.org/W4381663147, https://openalex.org/W3147388511, https://openalex.org/W3012903288, https://openalex.org/W4393902487, https://openalex.org/W3135672007, https://openalex.org/W2621009456, https://openalex.org/W2591686370, https://openalex.org/W3034819089, https://openalex.org/W4224141692, https://openalex.org/W2149427297, https://openalex.org/W6677385034, https://openalex.org/W2047221353, https://openalex.org/W4318980254, https://openalex.org/W6838492162, https://openalex.org/W3182064909, https://openalex.org/W2103235295, https://openalex.org/W2142537246, https://openalex.org/W4221103262, https://openalex.org/W3007517974, https://openalex.org/W3154646238, https://openalex.org/W6669996083, https://openalex.org/W2170907675, https://openalex.org/W2097670688, https://openalex.org/W2537515450, https://openalex.org/W2108017975, https://openalex.org/W3126117467, https://openalex.org/W6857106610, https://openalex.org/W3092238560, https://openalex.org/W4288450780, https://openalex.org/W3157252687, https://openalex.org/W3209981429, https://openalex.org/W6802589339, https://openalex.org/W3015395465, https://openalex.org/W4389493172, https://openalex.org/W2741307002, https://openalex.org/W2889361079, https://openalex.org/W4281630308, https://openalex.org/W2115584760, https://openalex.org/W4387455468 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.An | 100 |
| abstract_inverted_index.IR | 97 |
| abstract_inverted_index.In | 0, 71 |
| abstract_inverted_index.an | 10, 64 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.in | 67, 85, 116, 127 |
| abstract_inverted_index.is | 9, 80, 87, 109, 136 |
| abstract_inverted_index.of | 3, 57, 103, 106, 144 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.to | 21, 27, 33, 40, 138 |
| abstract_inverted_index.CHS | 86 |
| abstract_inverted_index.and | 17, 82 |
| abstract_inverted_index.are | 51, 120 |
| abstract_inverted_index.has | 36 |
| abstract_inverted_index.its | 83 |
| abstract_inverted_index.the | 1, 22, 55, 104, 132, 142, 145 |
| abstract_inverted_index.LTR, | 59, 117 |
| abstract_inverted_index.Rank | 34 |
| abstract_inverted_index.also | 37 |
| abstract_inverted_index.area | 2 |
| abstract_inverted_index.been | 38 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.more | 121 |
| abstract_inverted_index.rank | 28 |
| abstract_inverted_index.role | 66 |
| abstract_inverted_index.than | 123 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.used | 26, 39 |
| abstract_inverted_index.with | 111 |
| abstract_inverted_index.(LTR) | 35 |
| abstract_inverted_index.about | 13 |
| abstract_inverted_index.being | 25 |
| abstract_inverted_index.f-LTR | 108, 134 |
| abstract_inverted_index.field | 61, 125 |
| abstract_inverted_index.fused | 133 |
| abstract_inverted_index.model | 135 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.other | 124 |
| abstract_inverted_index.plays | 63 |
| abstract_inverted_index.since | 60 |
| abstract_inverted_index.there | 8 |
| abstract_inverted_index.title | 118 |
| abstract_inverted_index.user. | 23 |
| abstract_inverted_index.using | 107 |
| abstract_inverted_index.work, | 140 |
| abstract_inverted_index.(CHS), | 7 |
| abstract_inverted_index.coming | 46 |
| abstract_inverted_index.fields | 50 |
| abstract_inverted_index.health | 5, 19 |
| abstract_inverted_index.joined | 52 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.search | 6 |
| abstract_inverted_index.(f-LTR) | 78 |
| abstract_inverted_index.Besides | 24 |
| abstract_inverted_index.CLEF’ | 94 |
| abstract_inverted_index.concern | 12 |
| abstract_inverted_index.eHealth | 96 |
| abstract_inverted_index.effects | 105 |
| abstract_inverted_index.promote | 41 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.Learning | 32 |
| abstract_inverted_index.analysis | 102 |
| abstract_inverted_index.approach | 79 |
| abstract_inverted_index.compared | 137 |
| abstract_inverted_index.consumer | 4 |
| abstract_inverted_index.document | 49 |
| abstract_inverted_index.existing | 139 |
| abstract_inverted_index.features | 45, 119, 126 |
| abstract_inverted_index.in-depth | 101 |
| abstract_inverted_index.limiting | 54 |
| abstract_inverted_index.ranking. | 43, 70, 130 |
| abstract_inverted_index.relevant | 16, 30 |
| abstract_inverted_index.standard | 58 |
| abstract_inverted_index.thorough | 91 |
| abstract_inverted_index.Moreover, | 131 |
| abstract_inverted_index.different | 48 |
| abstract_inverted_index.effective | 122 |
| abstract_inverted_index.important | 65 |
| abstract_inverted_index.promoting | 68, 128 |
| abstract_inverted_index.proposed, | 81 |
| abstract_inverted_index.provided, | 110 |
| abstract_inverted_index.returning | 14 |
| abstract_inverted_index.together, | 53 |
| abstract_inverted_index.topically | 15, 29 |
| abstract_inverted_index.confirming | 141 |
| abstract_inverted_index.developing | 90 |
| abstract_inverted_index.documents, | 31 |
| abstract_inverted_index.increasing | 11 |
| abstract_inverted_index.suggesting | 114 |
| abstract_inverted_index.2016–2018 | 95 |
| abstract_inverted_index.application | 84 |
| abstract_inverted_index.experiments | 92 |
| abstract_inverted_index.field-level | 76 |
| abstract_inverted_index.information | 20, 62 |
| abstract_inverted_index.performance | 56 |
| abstract_inverted_index.collections. | 99 |
| abstract_inverted_index.experimental | 112 |
| abstract_inverted_index.investigated | 88 |
| abstract_inverted_index.methodology. | 146 |
| abstract_inverted_index.effectiveness | 143 |
| abstract_inverted_index.Traditionally, | 44 |
| abstract_inverted_index.understandable | 18 |
| abstract_inverted_index.Learning-to-Rank | 77 |
| abstract_inverted_index.understandability | 42, 69, 129 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5075065160 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I132586189 |
| citation_normalized_percentile.value | 0.33124766 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |