Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.19503
Methods of causal discovery aim to identify causal structures in a data driven way. Existing algorithms are known to be unstable and sensitive to statistical errors, and are therefore rarely used with biomedical or epidemiological data. We present an algorithm that efficiently exploits temporal structure, so-called tiered background knowledge, for estimating causal structures. Tiered background knowledge is readily available from, e.g., cohort or registry data. When used efficiently it renders the algorithm more robust to statistical errors and ultimately increases accuracy in finite samples. We describe the algorithm and illustrate how it proceeds. Moreover, we offer formal proofs as well as examples of desirable properties of the algorithm, which we demonstrate empirically in an extensive simulation study. To illustrate its usefulness in practice, we apply the algorithm to data from a children's cohort study investigating the interplay of diet, physical activity and other lifestyle factors for health outcomes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.19503
- https://arxiv.org/pdf/2406.19503
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400222393
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400222393Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.19503Digital Object Identifier
- Title
-
Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal StructureWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-27Full publication date if available
- Authors
-
Christine Winther Bang, Janine Witte, Ronja Foraita, Vanessa DidelezList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.19503Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.19503Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.19503Direct OA link when available
- Concepts
-
Sample (material), Computer science, Data science, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400222393 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.19503 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.19503 |
| ids.openalex | https://openalex.org/W4400222393 |
| fwci | |
| type | preprint |
| title | Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T11719 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9872000217437744 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Data Quality and Management |
| topics[2].id | https://openalex.org/T11063 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Rough Sets and Fuzzy Logic |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C198531522 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5788697004318237 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[0].display_name | Sample (material) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4989333152770996 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.34038692712783813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C121332964 |
| concepts[3].level | 0 |
| concepts[3].score | 0.10318022966384888 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[3].display_name | Physics |
| concepts[4].id | https://openalex.org/C97355855 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[4].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/sample |
| keywords[0].score | 0.5788697004318237 |
| keywords[0].display_name | Sample (material) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4989333152770996 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.34038692712783813 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/physics |
| keywords[3].score | 0.10318022966384888 |
| keywords[3].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.19503 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.19503 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.19503 |
| locations[1].id | doi:10.48550/arxiv.2406.19503 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.19503 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082894421 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6975-6840 |
| authorships[0].author.display_name | Christine Winther Bang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bang, Christine W |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5035468346 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Janine Witte |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Witte, Janine |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021210908 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2216-6653 |
| authorships[2].author.display_name | Ronja Foraita |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Foraita, Ronja |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038470056 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8587-7706 |
| authorships[3].author.display_name | Vanessa Didelez |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Didelez, Vanessa |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.19503 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-02T00:00:00 |
| display_name | Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.19503 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.19503 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.19503 |
| primary_location.id | pmh:oai:arXiv.org:2406.19503 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.19503 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.19503 |
| publication_date | 2024-06-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 130 |
| abstract_inverted_index.To | 117 |
| abstract_inverted_index.We | 36, 84 |
| abstract_inverted_index.an | 38, 113 |
| abstract_inverted_index.as | 98, 100 |
| abstract_inverted_index.be | 19 |
| abstract_inverted_index.in | 9, 81, 112, 121 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.it | 68, 91 |
| abstract_inverted_index.of | 1, 102, 105, 137 |
| abstract_inverted_index.or | 33, 62 |
| abstract_inverted_index.to | 5, 18, 23, 74, 127 |
| abstract_inverted_index.we | 94, 109, 123 |
| abstract_inverted_index.aim | 4 |
| abstract_inverted_index.and | 21, 26, 77, 88, 141 |
| abstract_inverted_index.are | 16, 27 |
| abstract_inverted_index.for | 49, 145 |
| abstract_inverted_index.how | 90 |
| abstract_inverted_index.its | 119 |
| abstract_inverted_index.the | 70, 86, 106, 125, 135 |
| abstract_inverted_index.When | 65 |
| abstract_inverted_index.data | 11, 128 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.more | 72 |
| abstract_inverted_index.that | 40 |
| abstract_inverted_index.used | 30, 66 |
| abstract_inverted_index.way. | 13 |
| abstract_inverted_index.well | 99 |
| abstract_inverted_index.with | 31 |
| abstract_inverted_index.apply | 124 |
| abstract_inverted_index.data. | 35, 64 |
| abstract_inverted_index.diet, | 138 |
| abstract_inverted_index.e.g., | 60 |
| abstract_inverted_index.from, | 59 |
| abstract_inverted_index.known | 17 |
| abstract_inverted_index.offer | 95 |
| abstract_inverted_index.other | 142 |
| abstract_inverted_index.study | 133 |
| abstract_inverted_index.which | 108 |
| abstract_inverted_index.Tiered | 53 |
| abstract_inverted_index.causal | 2, 7, 51 |
| abstract_inverted_index.cohort | 61, 132 |
| abstract_inverted_index.driven | 12 |
| abstract_inverted_index.errors | 76 |
| abstract_inverted_index.finite | 82 |
| abstract_inverted_index.formal | 96 |
| abstract_inverted_index.health | 146 |
| abstract_inverted_index.proofs | 97 |
| abstract_inverted_index.rarely | 29 |
| abstract_inverted_index.robust | 73 |
| abstract_inverted_index.study. | 116 |
| abstract_inverted_index.tiered | 46 |
| abstract_inverted_index.Methods | 0 |
| abstract_inverted_index.errors, | 25 |
| abstract_inverted_index.factors | 144 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.readily | 57 |
| abstract_inverted_index.renders | 69 |
| abstract_inverted_index.Existing | 14 |
| abstract_inverted_index.accuracy | 80 |
| abstract_inverted_index.activity | 140 |
| abstract_inverted_index.describe | 85 |
| abstract_inverted_index.examples | 101 |
| abstract_inverted_index.exploits | 42 |
| abstract_inverted_index.identify | 6 |
| abstract_inverted_index.physical | 139 |
| abstract_inverted_index.registry | 63 |
| abstract_inverted_index.samples. | 83 |
| abstract_inverted_index.temporal | 43 |
| abstract_inverted_index.unstable | 20 |
| abstract_inverted_index.Moreover, | 93 |
| abstract_inverted_index.algorithm | 39, 71, 87, 126 |
| abstract_inverted_index.available | 58 |
| abstract_inverted_index.desirable | 103 |
| abstract_inverted_index.discovery | 3 |
| abstract_inverted_index.extensive | 114 |
| abstract_inverted_index.increases | 79 |
| abstract_inverted_index.interplay | 136 |
| abstract_inverted_index.knowledge | 55 |
| abstract_inverted_index.lifestyle | 143 |
| abstract_inverted_index.outcomes. | 147 |
| abstract_inverted_index.practice, | 122 |
| abstract_inverted_index.proceeds. | 92 |
| abstract_inverted_index.sensitive | 22 |
| abstract_inverted_index.so-called | 45 |
| abstract_inverted_index.therefore | 28 |
| abstract_inverted_index.algorithm, | 107 |
| abstract_inverted_index.algorithms | 15 |
| abstract_inverted_index.background | 47, 54 |
| abstract_inverted_index.biomedical | 32 |
| abstract_inverted_index.children's | 131 |
| abstract_inverted_index.estimating | 50 |
| abstract_inverted_index.illustrate | 89, 118 |
| abstract_inverted_index.knowledge, | 48 |
| abstract_inverted_index.properties | 104 |
| abstract_inverted_index.simulation | 115 |
| abstract_inverted_index.structure, | 44 |
| abstract_inverted_index.structures | 8 |
| abstract_inverted_index.ultimately | 78 |
| abstract_inverted_index.usefulness | 120 |
| abstract_inverted_index.demonstrate | 110 |
| abstract_inverted_index.efficiently | 41, 67 |
| abstract_inverted_index.empirically | 111 |
| abstract_inverted_index.statistical | 24, 75 |
| abstract_inverted_index.structures. | 52 |
| abstract_inverted_index.investigating | 134 |
| abstract_inverted_index.epidemiological | 34 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |