Improving inference for nonlinear state-space models of animal\n population dynamics given biased sequential life stage data Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1909.09111
State-space models (SSMs) are a popular tool for modeling animal abundances.\nInference difficulties for simple linear SSMs are well known, particularly in\nrelation to simultaneous estimation of process and observation variances.\nSeveral remedies to overcome estimation problems have been studied for\nrelatively simple SSMs, but whether these challenges and proposed remedies\napply for nonlinear stage-structured SSMs, an important class of ecological\nmodels, is less well understood. Here we identify improvements for inference\nabout nonlinear stage-structured SSMs fit with biased sequential life stage\ndata. Theoretical analyses indicate parameter identifiability requires\ncovariates in the state processes. Simulation studies show that plugging in\nexternally estimated observation variances, as opposed to jointly estimating\nthem with other parameters, reduces bias and standard error of estimates. In\ncontrast to previous results for simple linear SSMs, strong confounding between\njointly estimated process and observation variance parameters was not found in\nthe models explored here. However, when observation variance was also estimated\nin the motivating case study, the resulting process variance estimates were\nimplausibly low (near-zero). As SSMs are used in increasingly complex ways,\nunderstanding when inference can be expected to be successful, and what aids\nit, becomes more important. Our study illustrates (i) the need for relevant\nprocess covariates and (ii) the benefits of using externally estimated\nobservation variances for inference for nonlinear stage-structured SSMs.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/1909.09111
- https://arxiv.org/pdf/1909.09111
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288104222
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288104222Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1909.09111Digital Object Identifier
- Title
-
Improving inference for nonlinear state-space models of animal\n population dynamics given biased sequential life stage dataWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2019Year of publication
- Publication date
-
2019-09-19Full publication date if available
- Authors
-
Leo Polansky, Ken B. Newman, Lara MitchellList of authors in order
- Landing page
-
https://arxiv.org/abs/1909.09111Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1909.09111Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1909.09111Direct OA link when available
- Concepts
-
Identifiability, Covariate, Inference, Variance (accounting), Econometrics, Nonlinear system, Statistics, Population, Computer science, State space, Mathematics, Process (computing), Random effects model, Artificial intelligence, Operating system, Physics, Medicine, Quantum mechanics, Internal medicine, Meta-analysis, Accounting, Business, Sociology, DemographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288104222 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1909.09111 |
| ids.openalex | https://openalex.org/W4288104222 |
| fwci | 0.0 |
| type | preprint |
| title | Improving inference for nonlinear state-space models of animal\n population dynamics given biased sequential life stage data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10243 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9049999713897705 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122770356 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7913053035736084 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1656753 |
| concepts[0].display_name | Identifiability |
| concepts[1].id | https://openalex.org/C119043178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.736595869064331 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[1].display_name | Covariate |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6780186891555786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C196083921 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5577419996261597 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[3].display_name | Variance (accounting) |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5116456151008606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C158622935 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5006155967712402 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[5].display_name | Nonlinear system |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48271724581718445 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C2908647359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4663298428058624 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[7].display_name | Population |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.44477343559265137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C72434380 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4409123659133911 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[9].display_name | State space |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.42198094725608826 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C98045186 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4178033173084259 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[11].display_name | Process (computing) |
| concepts[12].id | https://openalex.org/C168743327 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41682425141334534 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[12].display_name | Random effects model |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1805756688117981 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C126322002 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[18].display_name | Internal medicine |
| concepts[19].id | https://openalex.org/C95190672 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[19].display_name | Meta-analysis |
| concepts[20].id | https://openalex.org/C121955636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[20].display_name | Accounting |
| concepts[21].id | https://openalex.org/C144133560 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[21].display_name | Business |
| concepts[22].id | https://openalex.org/C144024400 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[22].display_name | Sociology |
| concepts[23].id | https://openalex.org/C149923435 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[23].display_name | Demography |
| keywords[0].id | https://openalex.org/keywords/identifiability |
| keywords[0].score | 0.7913053035736084 |
| keywords[0].display_name | Identifiability |
| keywords[1].id | https://openalex.org/keywords/covariate |
| keywords[1].score | 0.736595869064331 |
| keywords[1].display_name | Covariate |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6780186891555786 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/variance |
| keywords[3].score | 0.5577419996261597 |
| keywords[3].display_name | Variance (accounting) |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.5116456151008606 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/nonlinear-system |
| keywords[5].score | 0.5006155967712402 |
| keywords[5].display_name | Nonlinear system |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.48271724581718445 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/population |
| keywords[7].score | 0.4663298428058624 |
| keywords[7].display_name | Population |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.44477343559265137 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/state-space |
| keywords[9].score | 0.4409123659133911 |
| keywords[9].display_name | State space |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.42198094725608826 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/process |
| keywords[11].score | 0.4178033173084259 |
| keywords[11].display_name | Process (computing) |
| keywords[12].id | https://openalex.org/keywords/random-effects-model |
| keywords[12].score | 0.41682425141334534 |
| keywords[12].display_name | Random effects model |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.1805756688117981 |
| keywords[13].display_name | Artificial intelligence |
| language | |
| locations[0].id | pmh:oai:arXiv.org:1909.09111 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1909.09111 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1909.09111 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5079715807 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2738-8079 |
| authorships[0].author.display_name | Leo Polansky |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Polansky, Leo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073466469 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1734-5833 |
| authorships[1].author.display_name | Ken B. Newman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Newman, Ken B. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048481509 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8439-8508 |
| authorships[2].author.display_name | Lara Mitchell |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mitchell, Lara |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1909.09111 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-28T00:00:00 |
| display_name | Improving inference for nonlinear state-space models of animal\n population dynamics given biased sequential life stage data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10243 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9049999713897705 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Bayesian Inference |
| related_works | https://openalex.org/W2724847603, https://openalex.org/W2034041141, https://openalex.org/W2184661725, https://openalex.org/W2900187352, https://openalex.org/W2356632946, https://openalex.org/W4378619514, https://openalex.org/W3081207156, https://openalex.org/W2003852517, https://openalex.org/W2028861579, https://openalex.org/W1978277790 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1909.09111 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1909.09111 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1909.09111 |
| primary_location.id | pmh:oai:arXiv.org:1909.09111 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1909.09111 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1909.09111 |
| publication_date | 2019-09-19 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4 |
| abstract_inverted_index.As | 152 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.be | 163, 166 |
| abstract_inverted_index.in | 81, 156 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.of | 24, 54, 107, 187 |
| abstract_inverted_index.to | 21, 30, 96, 110, 165 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.(i) | 177 |
| abstract_inverted_index.Our | 174 |
| abstract_inverted_index.and | 26, 44, 104, 122, 168, 183 |
| abstract_inverted_index.are | 3, 16, 154 |
| abstract_inverted_index.but | 40 |
| abstract_inverted_index.can | 162 |
| abstract_inverted_index.fit | 69 |
| abstract_inverted_index.for | 7, 12, 47, 64, 113, 180, 192, 194 |
| abstract_inverted_index.low | 150 |
| abstract_inverted_index.not | 127 |
| abstract_inverted_index.the | 82, 140, 144, 178, 185 |
| abstract_inverted_index.was | 126, 137 |
| abstract_inverted_index.(ii) | 184 |
| abstract_inverted_index.Here | 60 |
| abstract_inverted_index.SSMs | 15, 68, 153 |
| abstract_inverted_index.also | 138 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.bias | 103 |
| abstract_inverted_index.case | 142 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.less | 57 |
| abstract_inverted_index.life | 73 |
| abstract_inverted_index.more | 172 |
| abstract_inverted_index.need | 179 |
| abstract_inverted_index.show | 87 |
| abstract_inverted_index.that | 88 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.used | 155 |
| abstract_inverted_index.well | 17, 58 |
| abstract_inverted_index.what | 169 |
| abstract_inverted_index.when | 134, 160 |
| abstract_inverted_index.with | 70, 99 |
| abstract_inverted_index.SSMs, | 39, 50, 116 |
| abstract_inverted_index.class | 53 |
| abstract_inverted_index.error | 106 |
| abstract_inverted_index.found | 128 |
| abstract_inverted_index.here. | 132 |
| abstract_inverted_index.other | 100 |
| abstract_inverted_index.state | 83 |
| abstract_inverted_index.study | 175 |
| abstract_inverted_index.these | 42 |
| abstract_inverted_index.using | 188 |
| abstract_inverted_index.(SSMs) | 2 |
| abstract_inverted_index.animal | 9 |
| abstract_inverted_index.biased | 71 |
| abstract_inverted_index.known, | 18 |
| abstract_inverted_index.linear | 14, 115 |
| abstract_inverted_index.models | 1, 130 |
| abstract_inverted_index.simple | 13, 38, 114 |
| abstract_inverted_index.strong | 117 |
| abstract_inverted_index.study, | 143 |
| abstract_inverted_index.SSMs.\n | 197 |
| abstract_inverted_index.becomes | 171 |
| abstract_inverted_index.complex | 158 |
| abstract_inverted_index.in\nthe | 129 |
| abstract_inverted_index.jointly | 97 |
| abstract_inverted_index.opposed | 95 |
| abstract_inverted_index.popular | 5 |
| abstract_inverted_index.process | 25, 121, 146 |
| abstract_inverted_index.reduces | 102 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.studied | 36 |
| abstract_inverted_index.studies | 86 |
| abstract_inverted_index.whether | 41 |
| abstract_inverted_index.However, | 133 |
| abstract_inverted_index.analyses | 76 |
| abstract_inverted_index.benefits | 186 |
| abstract_inverted_index.expected | 164 |
| abstract_inverted_index.explored | 131 |
| abstract_inverted_index.identify | 62 |
| abstract_inverted_index.indicate | 77 |
| abstract_inverted_index.modeling | 8 |
| abstract_inverted_index.overcome | 31 |
| abstract_inverted_index.plugging | 89 |
| abstract_inverted_index.previous | 111 |
| abstract_inverted_index.problems | 33 |
| abstract_inverted_index.proposed | 45 |
| abstract_inverted_index.remedies | 29 |
| abstract_inverted_index.standard | 105 |
| abstract_inverted_index.variance | 124, 136, 147 |
| abstract_inverted_index.aids\nit, | 170 |
| abstract_inverted_index.estimated | 91, 120 |
| abstract_inverted_index.estimates | 148 |
| abstract_inverted_index.important | 52 |
| abstract_inverted_index.inference | 161, 193 |
| abstract_inverted_index.nonlinear | 48, 66, 195 |
| abstract_inverted_index.parameter | 78 |
| abstract_inverted_index.resulting | 145 |
| abstract_inverted_index.variances | 191 |
| abstract_inverted_index.Simulation | 85 |
| abstract_inverted_index.challenges | 43 |
| abstract_inverted_index.covariates | 182 |
| abstract_inverted_index.estimates. | 108 |
| abstract_inverted_index.estimation | 23, 32 |
| abstract_inverted_index.externally | 189 |
| abstract_inverted_index.important. | 173 |
| abstract_inverted_index.motivating | 141 |
| abstract_inverted_index.parameters | 125 |
| abstract_inverted_index.processes. | 84 |
| abstract_inverted_index.sequential | 72 |
| abstract_inverted_index.variances, | 93 |
| abstract_inverted_index.State-space | 0 |
| abstract_inverted_index.Theoretical | 75 |
| abstract_inverted_index.confounding | 118 |
| abstract_inverted_index.illustrates | 176 |
| abstract_inverted_index.observation | 27, 92, 123, 135 |
| abstract_inverted_index.parameters, | 101 |
| abstract_inverted_index.successful, | 167 |
| abstract_inverted_index.understood. | 59 |
| abstract_inverted_index.(near-zero). | 151 |
| abstract_inverted_index.In\ncontrast | 109 |
| abstract_inverted_index.difficulties | 11 |
| abstract_inverted_index.improvements | 63 |
| abstract_inverted_index.in\nrelation | 20 |
| abstract_inverted_index.increasingly | 157 |
| abstract_inverted_index.particularly | 19 |
| abstract_inverted_index.simultaneous | 22 |
| abstract_inverted_index.stage\ndata. | 74 |
| abstract_inverted_index.estimated\nin | 139 |
| abstract_inverted_index.in\nexternally | 90 |
| abstract_inverted_index.for\nrelatively | 37 |
| abstract_inverted_index.identifiability | 79 |
| abstract_inverted_index.remedies\napply | 46 |
| abstract_inverted_index.between\njointly | 119 |
| abstract_inverted_index.estimating\nthem | 98 |
| abstract_inverted_index.inference\nabout | 65 |
| abstract_inverted_index.stage-structured | 49, 67, 196 |
| abstract_inverted_index.relevant\nprocess | 181 |
| abstract_inverted_index.were\nimplausibly | 149 |
| abstract_inverted_index.ecological\nmodels, | 55 |
| abstract_inverted_index.variances.\nSeveral | 28 |
| abstract_inverted_index.requires\ncovariates | 80 |
| abstract_inverted_index.ways,\nunderstanding | 159 |
| abstract_inverted_index.abundances.\nInference | 10 |
| abstract_inverted_index.estimated\nobservation | 190 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.27780858 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |