Improving KAN with CDF normalization to quantiles Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.13393
Data normalization is crucial in machine learning, usually performed by subtracting the mean and dividing by standard deviation, or by rescaling to a fixed range. In copula theory, popular in finance, there is used normalization to approximately quantiles by transforming x to CDF(x) with estimated CDF (cumulative distribution function) to nearly uniform distribution in [0,1], allowing for simpler representations which are less likely to overfit. It seems nearly unknown in machine learning, therefore, we would like to present some its advantages on example of recently popular Kolmogorov-Arnold Networks (KANs), improving predictions from Legendre-KAN by just switching rescaling to CDF normalization. Additionally, in HCR interpretation, weights of such neurons are mixed moments providing local joint distribution models, allow to propagate also probability distributions, and change propagation direction.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.13393
- https://arxiv.org/pdf/2507.13393
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416832916
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416832916Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.13393Digital Object Identifier
- Title
-
Improving KAN with CDF normalization to quantilesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-16Full publication date if available
- Authors
-
Jakub Strawa, Jarek DudaList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.13393Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.13393Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.13393Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416832916 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.13393 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.13393 |
| ids.openalex | https://openalex.org/W4416832916 |
| fwci | |
| type | preprint |
| title | Improving KAN with CDF normalization to quantiles |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.13393 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.13393 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.13393 |
| locations[1].id | doi:10.48550/arxiv.2507.13393 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.13393 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5120528166 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jakub Strawa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Strawa, Jakub |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5109420627 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jarek Duda |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Duda, Jarek |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.13393 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving KAN with CDF normalization to quantiles |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T00:54:40.826673 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.13393 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.13393 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.13393 |
| primary_location.id | pmh:oai:arXiv.org:2507.13393 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.13393 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.13393 |
| publication_date | 2025-07-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22 |
| abstract_inverted_index.x | 40 |
| abstract_inverted_index.In | 25 |
| abstract_inverted_index.It | 65 |
| abstract_inverted_index.by | 9, 15, 19, 38, 93 |
| abstract_inverted_index.in | 4, 29, 53, 69, 101 |
| abstract_inverted_index.is | 2, 32 |
| abstract_inverted_index.of | 83, 105 |
| abstract_inverted_index.on | 81 |
| abstract_inverted_index.or | 18 |
| abstract_inverted_index.to | 21, 35, 41, 49, 63, 76, 97, 117 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.CDF | 45, 98 |
| abstract_inverted_index.HCR | 102 |
| abstract_inverted_index.and | 13, 122 |
| abstract_inverted_index.are | 60, 108 |
| abstract_inverted_index.for | 56 |
| abstract_inverted_index.its | 79 |
| abstract_inverted_index.the | 11 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.also | 119 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.just | 94 |
| abstract_inverted_index.less | 61 |
| abstract_inverted_index.like | 75 |
| abstract_inverted_index.mean | 12 |
| abstract_inverted_index.some | 78 |
| abstract_inverted_index.such | 106 |
| abstract_inverted_index.used | 33 |
| abstract_inverted_index.with | 43 |
| abstract_inverted_index.allow | 116 |
| abstract_inverted_index.fixed | 23 |
| abstract_inverted_index.joint | 113 |
| abstract_inverted_index.local | 112 |
| abstract_inverted_index.mixed | 109 |
| abstract_inverted_index.seems | 66 |
| abstract_inverted_index.there | 31 |
| abstract_inverted_index.which | 59 |
| abstract_inverted_index.would | 74 |
| abstract_inverted_index.CDF(x) | 42 |
| abstract_inverted_index.[0,1], | 54 |
| abstract_inverted_index.change | 123 |
| abstract_inverted_index.copula | 26 |
| abstract_inverted_index.likely | 62 |
| abstract_inverted_index.nearly | 50, 67 |
| abstract_inverted_index.range. | 24 |
| abstract_inverted_index.(KANs), | 88 |
| abstract_inverted_index.crucial | 3 |
| abstract_inverted_index.example | 82 |
| abstract_inverted_index.machine | 5, 70 |
| abstract_inverted_index.models, | 115 |
| abstract_inverted_index.moments | 110 |
| abstract_inverted_index.neurons | 107 |
| abstract_inverted_index.popular | 28, 85 |
| abstract_inverted_index.present | 77 |
| abstract_inverted_index.simpler | 57 |
| abstract_inverted_index.theory, | 27 |
| abstract_inverted_index.uniform | 51 |
| abstract_inverted_index.unknown | 68 |
| abstract_inverted_index.usually | 7 |
| abstract_inverted_index.weights | 104 |
| abstract_inverted_index.Networks | 87 |
| abstract_inverted_index.allowing | 55 |
| abstract_inverted_index.dividing | 14 |
| abstract_inverted_index.finance, | 30 |
| abstract_inverted_index.overfit. | 64 |
| abstract_inverted_index.recently | 84 |
| abstract_inverted_index.standard | 16 |
| abstract_inverted_index.estimated | 44 |
| abstract_inverted_index.function) | 48 |
| abstract_inverted_index.improving | 89 |
| abstract_inverted_index.learning, | 6, 71 |
| abstract_inverted_index.performed | 8 |
| abstract_inverted_index.propagate | 118 |
| abstract_inverted_index.providing | 111 |
| abstract_inverted_index.quantiles | 37 |
| abstract_inverted_index.rescaling | 20, 96 |
| abstract_inverted_index.switching | 95 |
| abstract_inverted_index.advantages | 80 |
| abstract_inverted_index.deviation, | 17 |
| abstract_inverted_index.direction. | 125 |
| abstract_inverted_index.therefore, | 72 |
| abstract_inverted_index.(cumulative | 46 |
| abstract_inverted_index.predictions | 90 |
| abstract_inverted_index.probability | 120 |
| abstract_inverted_index.propagation | 124 |
| abstract_inverted_index.subtracting | 10 |
| abstract_inverted_index.Legendre-KAN | 92 |
| abstract_inverted_index.distribution | 47, 52, 114 |
| abstract_inverted_index.transforming | 39 |
| abstract_inverted_index.Additionally, | 100 |
| abstract_inverted_index.approximately | 36 |
| abstract_inverted_index.normalization | 1, 34 |
| abstract_inverted_index.distributions, | 121 |
| abstract_inverted_index.normalization. | 99 |
| abstract_inverted_index.interpretation, | 103 |
| abstract_inverted_index.representations | 58 |
| abstract_inverted_index.Kolmogorov-Arnold | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |