Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v35i10.17106
In addition to high accuracy, robustness is becoming increasingly important for machine learning models in various applications. Recently, much research has been devoted to improving the model robustness by training with noise perturbations. Most existing studies assume a fixed perturbation level for all training examples, which however hardly holds in real tasks. In fact, excessive perturbations may destroy the discriminative content of an example, while deficient perturbations may fail to provide helpful information for improving the robustness. Motivated by this observation, we propose to adaptively adjust the perturbation levels for each example in the training process. Specifically, a novel active learning framework is proposed to allow the model interactively querying the correct perturbation level from human experts. By designing a cost-effective sampling strategy along with a new query type, the robustness can be significantly improved with a few queries. Both theoretical analysis and experimental studies validate the effectiveness of the proposed approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v35i10.17106
- https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913
- OA Status
- diamond
- Cited By
- 8
- References
- 85
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3140223115
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3140223115Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v35i10.17106Digital Object Identifier
- Title
-
Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active QueriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-18Full publication date if available
- Authors
-
Kun-Peng Ning, Lue Tao, Songcan Chen, Sheng-Jun HuangList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v35i10.17106Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913Direct OA link when available
- Concepts
-
Robustness (evolution), Computer science, Discriminative model, Perturbation (astronomy), Machine learning, Artificial intelligence, Gene, Physics, Biochemistry, Quantum mechanics, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
85Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3140223115 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v35i10.17106 |
| ids.doi | https://doi.org/10.1609/aaai.v35i10.17106 |
| ids.mag | 3140223115 |
| ids.openalex | https://openalex.org/W3140223115 |
| fwci | 0.85833795 |
| type | article |
| title | Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries |
| biblio.issue | 10 |
| biblio.volume | 35 |
| biblio.last_page | 9169 |
| biblio.first_page | 9161 |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7759535312652588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7107665538787842 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6327735781669617 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C177918212 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6170845627784729 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q803623 |
| concepts[3].display_name | Perturbation (astronomy) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4610940217971802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40625709295272827 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C104317684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[6].display_name | Gene |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C55493867 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[8].display_name | Biochemistry |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7759535312652588 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7107665538787842 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.6327735781669617 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/perturbation |
| keywords[3].score | 0.6170845627784729 |
| keywords[3].display_name | Perturbation (astronomy) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4610940217971802 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40625709295272827 |
| keywords[5].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1609/aaai.v35i10.17106 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v35i10.17106 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056432762 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8249-9911 |
| authorships[0].author.display_name | Kun-Peng Ning |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9842412 |
| authorships[0].affiliations[0].raw_affiliation_string | Nanjing University of Aeronautics and Astronautics |
| authorships[0].institutions[0].id | https://openalex.org/I9842412 |
| authorships[0].institutions[0].ror | https://ror.org/01scyh794 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9842412 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Aeronautics and Astronautics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kun-Peng Ning |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nanjing University of Aeronautics and Astronautics |
| authorships[1].author.id | https://openalex.org/A5049073944 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lue Tao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9842412 |
| authorships[1].affiliations[0].raw_affiliation_string | Nanjing University of Aeronautics and Astronautics |
| authorships[1].institutions[0].id | https://openalex.org/I9842412 |
| authorships[1].institutions[0].ror | https://ror.org/01scyh794 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9842412 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Aeronautics and Astronautics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lue Tao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nanjing University of Aeronautics and Astronautics |
| authorships[2].author.id | https://openalex.org/A5101596072 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5164-0070 |
| authorships[2].author.display_name | Songcan Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9842412 |
| authorships[2].affiliations[0].raw_affiliation_string | Nanjing University of Aeronautics and Astronautics |
| authorships[2].institutions[0].id | https://openalex.org/I9842412 |
| authorships[2].institutions[0].ror | https://ror.org/01scyh794 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9842412 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Aeronautics and Astronautics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Songcan Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Nanjing University of Aeronautics and Astronautics |
| authorships[3].author.id | https://openalex.org/A5103204774 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7673-5367 |
| authorships[3].author.display_name | Sheng-Jun Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9842412 |
| authorships[3].affiliations[0].raw_affiliation_string | Nanjing University of Aeronautics and Astronautics |
| authorships[3].institutions[0].id | https://openalex.org/I9842412 |
| authorships[3].institutions[0].ror | https://ror.org/01scyh794 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9842412 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Aeronautics and Astronautics |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sheng-Jun Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Nanjing University of Aeronautics and Astronautics |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Model Robustness by Adaptively Correcting Perturbation Levels with Active Queries |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W2983744209, https://openalex.org/W2961085424, https://openalex.org/W2026121273, https://openalex.org/W2801772698, https://openalex.org/W66955737, https://openalex.org/W2102106825, https://openalex.org/W2892923641, https://openalex.org/W4306674287, https://openalex.org/W2757507228, https://openalex.org/W3100092831 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v35i10.17106 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v35i10.17106 |
| primary_location.id | doi:10.1609/aaai.v35i10.17106 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/17106/16913 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v35i10.17106 |
| publication_date | 2021-05-18 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2111406701, https://openalex.org/W2995823288, https://openalex.org/W6682208247, https://openalex.org/W2911634294, https://openalex.org/W2144732271, https://openalex.org/W6655840284, https://openalex.org/W6669270336, https://openalex.org/W2906186365, https://openalex.org/W6641405113, https://openalex.org/W1677182931, https://openalex.org/W6687483927, https://openalex.org/W2905631704, https://openalex.org/W2954540134, https://openalex.org/W2012878613, https://openalex.org/W2044200706, https://openalex.org/W2604282398, https://openalex.org/W2942630857, https://openalex.org/W2163605009, https://openalex.org/W2112796928, https://openalex.org/W6666817399, https://openalex.org/W6767248609, https://openalex.org/W6625791767, https://openalex.org/W6670224864, https://openalex.org/W2515753980, https://openalex.org/W1484084878, https://openalex.org/W6756615331, https://openalex.org/W6670662067, https://openalex.org/W6679436768, https://openalex.org/W7024761944, https://openalex.org/W2996344901, https://openalex.org/W2031326491, https://openalex.org/W2913314773, https://openalex.org/W2913266441, https://openalex.org/W3103340107, https://openalex.org/W3007305010, https://openalex.org/W4293846201, https://openalex.org/W2786104118, https://openalex.org/W2964253222, https://openalex.org/W4285719527, https://openalex.org/W3005576178, https://openalex.org/W2080021732, https://openalex.org/W2085989833, https://openalex.org/W2949769151, https://openalex.org/W2970088379, https://openalex.org/W1673923490, https://openalex.org/W2964153729, https://openalex.org/W2989929945, https://openalex.org/W2999615834, https://openalex.org/W2766447205, https://openalex.org/W2079054072, https://openalex.org/W2151239833, https://openalex.org/W2950687935, https://openalex.org/W2194775991, https://openalex.org/W3044036242, https://openalex.org/W3043057662, https://openalex.org/W4285706568, https://openalex.org/W2798966449, https://openalex.org/W2994088087, https://openalex.org/W2950048339, https://openalex.org/W2963060032, https://openalex.org/W2021732807, https://openalex.org/W4288359148, https://openalex.org/W2130942839, https://openalex.org/W3006834354, https://openalex.org/W2149846618, https://openalex.org/W986644418, https://openalex.org/W4301599248, https://openalex.org/W4288618201, https://openalex.org/W3012575288, https://openalex.org/W4288404646, https://openalex.org/W2165484066, https://openalex.org/W2065010255, https://openalex.org/W1964929969, https://openalex.org/W2903158431, https://openalex.org/W4287864733, https://openalex.org/W2972267366, https://openalex.org/W2913848079, https://openalex.org/W2961540362, https://openalex.org/W4288281368, https://openalex.org/W3118608800, https://openalex.org/W2962718684, https://openalex.org/W2076118331, https://openalex.org/W2970115835, https://openalex.org/W4308831279, https://openalex.org/W2952610664 |
| referenced_works_count | 85 |
| abstract_inverted_index.a | 37, 97, 119, 125, 136 |
| abstract_inverted_index.By | 117 |
| abstract_inverted_index.In | 0, 52 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.be | 132 |
| abstract_inverted_index.by | 28, 78 |
| abstract_inverted_index.in | 14, 49, 92 |
| abstract_inverted_index.is | 6, 102 |
| abstract_inverted_index.of | 61, 148 |
| abstract_inverted_index.to | 2, 23, 69, 83, 104 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.all | 42 |
| abstract_inverted_index.and | 142 |
| abstract_inverted_index.can | 131 |
| abstract_inverted_index.few | 137 |
| abstract_inverted_index.for | 10, 41, 73, 89 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.may | 56, 67 |
| abstract_inverted_index.new | 126 |
| abstract_inverted_index.the | 25, 58, 75, 86, 93, 106, 110, 129, 146, 149 |
| abstract_inverted_index.Both | 139 |
| abstract_inverted_index.Most | 33 |
| abstract_inverted_index.been | 21 |
| abstract_inverted_index.each | 90 |
| abstract_inverted_index.fail | 68 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.high | 3 |
| abstract_inverted_index.much | 18 |
| abstract_inverted_index.real | 50 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.with | 30, 124, 135 |
| abstract_inverted_index.allow | 105 |
| abstract_inverted_index.along | 123 |
| abstract_inverted_index.fact, | 53 |
| abstract_inverted_index.fixed | 38 |
| abstract_inverted_index.holds | 48 |
| abstract_inverted_index.human | 115 |
| abstract_inverted_index.level | 40, 113 |
| abstract_inverted_index.model | 26, 107 |
| abstract_inverted_index.noise | 31 |
| abstract_inverted_index.novel | 98 |
| abstract_inverted_index.query | 127 |
| abstract_inverted_index.type, | 128 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.while | 64 |
| abstract_inverted_index.active | 99 |
| abstract_inverted_index.adjust | 85 |
| abstract_inverted_index.assume | 36 |
| abstract_inverted_index.hardly | 47 |
| abstract_inverted_index.levels | 88 |
| abstract_inverted_index.models | 13 |
| abstract_inverted_index.tasks. | 51 |
| abstract_inverted_index.content | 60 |
| abstract_inverted_index.correct | 111 |
| abstract_inverted_index.destroy | 57 |
| abstract_inverted_index.devoted | 22 |
| abstract_inverted_index.example | 91 |
| abstract_inverted_index.helpful | 71 |
| abstract_inverted_index.however | 46 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.provide | 70 |
| abstract_inverted_index.studies | 35, 144 |
| abstract_inverted_index.various | 15 |
| abstract_inverted_index.addition | 1 |
| abstract_inverted_index.analysis | 141 |
| abstract_inverted_index.becoming | 7 |
| abstract_inverted_index.example, | 63 |
| abstract_inverted_index.existing | 34 |
| abstract_inverted_index.experts. | 116 |
| abstract_inverted_index.improved | 134 |
| abstract_inverted_index.learning | 12, 100 |
| abstract_inverted_index.process. | 95 |
| abstract_inverted_index.proposed | 103, 150 |
| abstract_inverted_index.queries. | 138 |
| abstract_inverted_index.querying | 109 |
| abstract_inverted_index.research | 19 |
| abstract_inverted_index.sampling | 121 |
| abstract_inverted_index.strategy | 122 |
| abstract_inverted_index.training | 29, 43, 94 |
| abstract_inverted_index.validate | 145 |
| abstract_inverted_index.Motivated | 77 |
| abstract_inverted_index.Recently, | 17 |
| abstract_inverted_index.accuracy, | 4 |
| abstract_inverted_index.approach. | 151 |
| abstract_inverted_index.deficient | 65 |
| abstract_inverted_index.designing | 118 |
| abstract_inverted_index.examples, | 44 |
| abstract_inverted_index.excessive | 54 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.improving | 24, 74 |
| abstract_inverted_index.adaptively | 84 |
| abstract_inverted_index.robustness | 5, 27, 130 |
| abstract_inverted_index.information | 72 |
| abstract_inverted_index.robustness. | 76 |
| abstract_inverted_index.theoretical | 140 |
| abstract_inverted_index.experimental | 143 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.observation, | 80 |
| abstract_inverted_index.perturbation | 39, 87, 112 |
| abstract_inverted_index.Specifically, | 96 |
| abstract_inverted_index.applications. | 16 |
| abstract_inverted_index.effectiveness | 147 |
| abstract_inverted_index.interactively | 108 |
| abstract_inverted_index.perturbations | 55, 66 |
| abstract_inverted_index.significantly | 133 |
| abstract_inverted_index.cost-effective | 120 |
| abstract_inverted_index.discriminative | 59 |
| abstract_inverted_index.perturbations. | 32 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.76262014 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |