Improving parameter inference by resolving Bayesian prior ambiguity via multi-dataset analysis: Application to isothermal titration calorimetry Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.07.09.663792
Isothermal titration calorimetry (ITC) is a powerful technique for probing biomolecular interactions. However, accurate determination of binding parameters—such as enthalpy and free energy—as well as associated uncertainties can be hindered by noise and concentration variability. Notably, the mathematical ambiguity surrounding analyte concentrations in standard binding models intrinsically limits the precision with which binding parameters, particularly binding enthalpies, can be determined. Here, we present a Bayesian pipeline that resolves this ambiguity by combining two key strategies: simultaneous analysis of multiple ITC datasets and a hierarchical Bayesian treatment of analyte concentration priors. This dual approach not only lifts the degeneracy inherent in single-dataset studies but also removes an ambiguity typically present in Bayesian analysis by self-consistently refining concentration estimates, ensuring optimal joint inference of binding parameters and concentrations. Using modern Monte Carlo techniques enables our pipeline to provide robust posterior sampling for more than 10 datasets and 40 total parameters. We validate the approach with synthetic ITC datasets for single- and multi-site binding models and apply it to experimental data, including 14 datasets for 1:1 binding of Mg(II) to the chelator EDTA and multiple datasets of the hub protein LC8 with diverse binding partners. This work serves as a foundation for improving the precision of binding constants using multiple ITC datasets, while providing a systematic framework for assessing the reliability of experimental concentration estimates, paving the way for more accurate biomolecular interaction studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.07.09.663792
- https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412360284
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412360284Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.07.09.663792Digital Object Identifier
- Title
-
Improving parameter inference by resolving Bayesian prior ambiguity via multi-dataset analysis: Application to isothermal titration calorimetryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-11Full publication date if available
- Authors
-
Lisa Arndt, Douglas R. Walker, Elisar Barbar, Daniel M. ZuckermanList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.07.09.663792Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdfDirect OA link when available
- Concepts
-
Isothermal titration calorimetry, Ambiguity, Inference, Bayesian probability, Isothermal process, Titration, Calorimetry, Bayesian inference, Econometrics, Statistical inference, Computer science, Statistics, Artificial intelligence, Mathematics, Chemistry, Thermodynamics, Physics, Physical chemistry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412360284 |
|---|---|
| doi | https://doi.org/10.1101/2025.07.09.663792 |
| ids.doi | https://doi.org/10.1101/2025.07.09.663792 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40672180 |
| ids.openalex | https://openalex.org/W4412360284 |
| fwci | 5.97928667 |
| type | preprint |
| title | Improving parameter inference by resolving Bayesian prior ambiguity via multi-dataset analysis: Application to isothermal titration calorimetry |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13539 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1606 |
| topics[0].subfield.display_name | Physical and Theoretical Chemistry |
| topics[0].display_name | thermodynamics and calorimetric analyses |
| topics[1].id | https://openalex.org/T12850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9873999953269958 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Field-Flow Fractionation Techniques |
| topics[2].id | https://openalex.org/T12763 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.970300018787384 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | ATP Synthase and ATPases Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C156911925 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8895125389099121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q643384 |
| concepts[0].display_name | Isothermal titration calorimetry |
| concepts[1].id | https://openalex.org/C2780522230 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7514322996139526 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1140419 |
| concepts[1].display_name | Ambiguity |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6168344020843506 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6007079482078552 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C133347239 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5827612280845642 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q486921 |
| concepts[4].display_name | Isothermal process |
| concepts[5].id | https://openalex.org/C184866935 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5393789410591125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q191010 |
| concepts[5].display_name | Titration |
| concepts[6].id | https://openalex.org/C202270520 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5319122672080994 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q634314 |
| concepts[6].display_name | Calorimetry |
| concepts[7].id | https://openalex.org/C160234255 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4680129289627075 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[7].display_name | Bayesian inference |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4435540437698364 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C134261354 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43655237555503845 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[9].display_name | Statistical inference |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.412567138671875 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35877156257629395 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.26739567518234253 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2645646631717682 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2543083429336548 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.19428378343582153 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.17177966237068176 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C147789679 |
| concepts[17].level | 1 |
| concepts[17].score | 0.07335498929023743 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[17].display_name | Physical chemistry |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/isothermal-titration-calorimetry |
| keywords[0].score | 0.8895125389099121 |
| keywords[0].display_name | Isothermal titration calorimetry |
| keywords[1].id | https://openalex.org/keywords/ambiguity |
| keywords[1].score | 0.7514322996139526 |
| keywords[1].display_name | Ambiguity |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6168344020843506 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.6007079482078552 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/isothermal-process |
| keywords[4].score | 0.5827612280845642 |
| keywords[4].display_name | Isothermal process |
| keywords[5].id | https://openalex.org/keywords/titration |
| keywords[5].score | 0.5393789410591125 |
| keywords[5].display_name | Titration |
| keywords[6].id | https://openalex.org/keywords/calorimetry |
| keywords[6].score | 0.5319122672080994 |
| keywords[6].display_name | Calorimetry |
| keywords[7].id | https://openalex.org/keywords/bayesian-inference |
| keywords[7].score | 0.4680129289627075 |
| keywords[7].display_name | Bayesian inference |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.4435540437698364 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/statistical-inference |
| keywords[9].score | 0.43655237555503845 |
| keywords[9].display_name | Statistical inference |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.412567138671875 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.35877156257629395 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.26739567518234253 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2645646631717682 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/chemistry |
| keywords[14].score | 0.2543083429336548 |
| keywords[14].display_name | Chemistry |
| keywords[15].id | https://openalex.org/keywords/thermodynamics |
| keywords[15].score | 0.19428378343582153 |
| keywords[15].display_name | Thermodynamics |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.17177966237068176 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/physical-chemistry |
| keywords[17].score | 0.07335498929023743 |
| keywords[17].display_name | Physical chemistry |
| language | en |
| locations[0].id | doi:10.1101/2025.07.09.663792 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.07.09.663792 |
| locations[1].id | pmid:40672180 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40672180 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12265561 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | bioRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12265561 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5019020241 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2561-575X |
| authorships[0].author.display_name | Lisa Arndt |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165690674 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I165690674 |
| authorships[0].institutions[0].ror | https://ror.org/009avj582 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165690674 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oregon Health & Science University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lisa Otten |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America |
| authorships[1].author.id | https://openalex.org/A5030462649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9323-3158 |
| authorships[1].author.display_name | Douglas R. Walker |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I131249849 |
| authorships[1].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oregon State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Douglas R. Walker |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America |
| authorships[2].author.id | https://openalex.org/A5081917442 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4892-5259 |
| authorships[2].author.display_name | Elisar Barbar |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America |
| authorships[2].institutions[0].id | https://openalex.org/I131249849 |
| authorships[2].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oregon State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Elisar J. Barbar |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America |
| authorships[3].author.id | https://openalex.org/A5003813944 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7662-2031 |
| authorships[3].author.display_name | Daniel M. Zuckerman |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165690674 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America |
| authorships[3].institutions[0].id | https://openalex.org/I165690674 |
| authorships[3].institutions[0].ror | https://ror.org/009avj582 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165690674 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oregon Health & Science University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Daniel M. Zuckerman |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving parameter inference by resolving Bayesian prior ambiguity via multi-dataset analysis: Application to isothermal titration calorimetry |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13539 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1606 |
| primary_topic.subfield.display_name | Physical and Theoretical Chemistry |
| primary_topic.display_name | thermodynamics and calorimetric analyses |
| related_works | https://openalex.org/W2139293867, https://openalex.org/W2097228933, https://openalex.org/W436002774, https://openalex.org/W4237305860, https://openalex.org/W2205942355, https://openalex.org/W1670678615, https://openalex.org/W2551047143, https://openalex.org/W2553419413, https://openalex.org/W2052167607, https://openalex.org/W2796225681 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2025.07.09.663792 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.07.09.663792 |
| primary_location.id | doi:10.1101/2025.07.09.663792 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/07/11/2025.07.09.663792.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.07.09.663792 |
| publication_date | 2025-07-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2139035697, https://openalex.org/W2020357919, https://openalex.org/W2058587141, https://openalex.org/W4246016891, https://openalex.org/W2130492820, https://openalex.org/W1977346371, https://openalex.org/W2153207080, https://openalex.org/W2011668781, https://openalex.org/W1966438336, https://openalex.org/W4283741550, https://openalex.org/W4248681815, https://openalex.org/W206565532, https://openalex.org/W4225396410, https://openalex.org/W4391933389, https://openalex.org/W2335246627, https://openalex.org/W2783513769, https://openalex.org/W3127412243, https://openalex.org/W3014523765, https://openalex.org/W2122028584, https://openalex.org/W4312211203, https://openalex.org/W2791004613, https://openalex.org/W2795617574, https://openalex.org/W3035695973, https://openalex.org/W4210339745, https://openalex.org/W4387539517, https://openalex.org/W4388773345, https://openalex.org/W59692373, https://openalex.org/W1980143127, https://openalex.org/W2028035578, https://openalex.org/W4292155219, https://openalex.org/W2138309709, https://openalex.org/W3206719683, https://openalex.org/W1970202979, https://openalex.org/W2048193536, https://openalex.org/W2017780304, https://openalex.org/W2954958915 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 6, 64, 83, 197, 212 |
| abstract_inverted_index.10 | 143 |
| abstract_inverted_index.14 | 170 |
| abstract_inverted_index.40 | 146 |
| abstract_inverted_index.We | 149 |
| abstract_inverted_index.an | 106 |
| abstract_inverted_index.as | 19, 25, 196 |
| abstract_inverted_index.be | 29, 59 |
| abstract_inverted_index.by | 31, 71, 113 |
| abstract_inverted_index.in | 43, 100, 110 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.it | 165 |
| abstract_inverted_index.of | 16, 78, 87, 122, 175, 184, 203, 219 |
| abstract_inverted_index.to | 135, 166, 177 |
| abstract_inverted_index.we | 62 |
| abstract_inverted_index.1:1 | 173 |
| abstract_inverted_index.ITC | 80, 155, 208 |
| abstract_inverted_index.LC8 | 188 |
| abstract_inverted_index.and | 21, 33, 82, 125, 145, 159, 163, 181 |
| abstract_inverted_index.but | 103 |
| abstract_inverted_index.can | 28, 58 |
| abstract_inverted_index.for | 9, 140, 157, 172, 199, 215, 226 |
| abstract_inverted_index.hub | 186 |
| abstract_inverted_index.key | 74 |
| abstract_inverted_index.not | 94 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 37, 49, 97, 151, 178, 185, 201, 217, 224 |
| abstract_inverted_index.two | 73 |
| abstract_inverted_index.way | 225 |
| abstract_inverted_index.EDTA | 180 |
| abstract_inverted_index.This | 91, 193 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.dual | 92 |
| abstract_inverted_index.free | 22 |
| abstract_inverted_index.more | 141, 227 |
| abstract_inverted_index.only | 95 |
| abstract_inverted_index.than | 142 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.well | 24 |
| abstract_inverted_index.with | 51, 153, 189 |
| abstract_inverted_index.work | 194 |
| abstract_inverted_index.(ITC) | 4 |
| abstract_inverted_index.Carlo | 130 |
| abstract_inverted_index.Here, | 61 |
| abstract_inverted_index.Monte | 129 |
| abstract_inverted_index.Using | 127 |
| abstract_inverted_index.apply | 164 |
| abstract_inverted_index.data, | 168 |
| abstract_inverted_index.joint | 120 |
| abstract_inverted_index.lifts | 96 |
| abstract_inverted_index.noise | 32 |
| abstract_inverted_index.total | 147 |
| abstract_inverted_index.using | 206 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.while | 210 |
| abstract_inverted_index.Mg(II) | 176 |
| abstract_inverted_index.limits | 48 |
| abstract_inverted_index.models | 46, 162 |
| abstract_inverted_index.modern | 128 |
| abstract_inverted_index.paving | 223 |
| abstract_inverted_index.robust | 137 |
| abstract_inverted_index.serves | 195 |
| abstract_inverted_index.analyte | 41, 88 |
| abstract_inverted_index.binding | 17, 45, 53, 56, 123, 161, 174, 191, 204 |
| abstract_inverted_index.diverse | 190 |
| abstract_inverted_index.enables | 132 |
| abstract_inverted_index.optimal | 119 |
| abstract_inverted_index.present | 63, 109 |
| abstract_inverted_index.priors. | 90 |
| abstract_inverted_index.probing | 10 |
| abstract_inverted_index.protein | 187 |
| abstract_inverted_index.provide | 136 |
| abstract_inverted_index.removes | 105 |
| abstract_inverted_index.single- | 158 |
| abstract_inverted_index.studies | 102 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 65, 85, 111 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Notably, | 36 |
| abstract_inverted_index.accurate | 14, 228 |
| abstract_inverted_index.analysis | 77, 112 |
| abstract_inverted_index.approach | 93, 152 |
| abstract_inverted_index.chelator | 179 |
| abstract_inverted_index.datasets | 81, 144, 156, 171, 183 |
| abstract_inverted_index.ensuring | 118 |
| abstract_inverted_index.enthalpy | 20 |
| abstract_inverted_index.hindered | 30 |
| abstract_inverted_index.inherent | 99 |
| abstract_inverted_index.multiple | 79, 182, 207 |
| abstract_inverted_index.pipeline | 66, 134 |
| abstract_inverted_index.powerful | 7 |
| abstract_inverted_index.refining | 115 |
| abstract_inverted_index.resolves | 68 |
| abstract_inverted_index.sampling | 139 |
| abstract_inverted_index.standard | 44 |
| abstract_inverted_index.studies. | 231 |
| abstract_inverted_index.validate | 150 |
| abstract_inverted_index.ambiguity | 39, 70, 107 |
| abstract_inverted_index.assessing | 216 |
| abstract_inverted_index.combining | 72 |
| abstract_inverted_index.constants | 205 |
| abstract_inverted_index.datasets, | 209 |
| abstract_inverted_index.framework | 214 |
| abstract_inverted_index.improving | 200 |
| abstract_inverted_index.including | 169 |
| abstract_inverted_index.inference | 121 |
| abstract_inverted_index.partners. | 192 |
| abstract_inverted_index.posterior | 138 |
| abstract_inverted_index.precision | 50, 202 |
| abstract_inverted_index.providing | 211 |
| abstract_inverted_index.synthetic | 154 |
| abstract_inverted_index.technique | 8 |
| abstract_inverted_index.titration | 2 |
| abstract_inverted_index.treatment | 86 |
| abstract_inverted_index.typically | 108 |
| abstract_inverted_index.Isothermal | 1 |
| abstract_inverted_index.associated | 26 |
| abstract_inverted_index.degeneracy | 98 |
| abstract_inverted_index.estimates, | 117, 222 |
| abstract_inverted_index.foundation | 198 |
| abstract_inverted_index.multi-site | 160 |
| abstract_inverted_index.parameters | 124 |
| abstract_inverted_index.systematic | 213 |
| abstract_inverted_index.techniques | 131 |
| abstract_inverted_index.calorimetry | 3 |
| abstract_inverted_index.determined. | 60 |
| abstract_inverted_index.energy—as | 23 |
| abstract_inverted_index.enthalpies, | 57 |
| abstract_inverted_index.interaction | 230 |
| abstract_inverted_index.parameters, | 54 |
| abstract_inverted_index.parameters. | 148 |
| abstract_inverted_index.reliability | 218 |
| abstract_inverted_index.strategies: | 75 |
| abstract_inverted_index.surrounding | 40 |
| abstract_inverted_index.biomolecular | 11, 229 |
| abstract_inverted_index.experimental | 167, 220 |
| abstract_inverted_index.hierarchical | 84 |
| abstract_inverted_index.mathematical | 38 |
| abstract_inverted_index.particularly | 55 |
| abstract_inverted_index.simultaneous | 76 |
| abstract_inverted_index.variability. | 35 |
| abstract_inverted_index.concentration | 34, 89, 116, 221 |
| abstract_inverted_index.determination | 15 |
| abstract_inverted_index.interactions. | 12 |
| abstract_inverted_index.intrinsically | 47 |
| abstract_inverted_index.uncertainties | 27 |
| abstract_inverted_index.concentrations | 42 |
| abstract_inverted_index.single-dataset | 101 |
| abstract_inverted_index.concentrations. | 126 |
| abstract_inverted_index.parameters—such | 18 |
| abstract_inverted_index.self-consistently | 114 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5003813944, https://openalex.org/A5081917442 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I131249849, https://openalex.org/I165690674 |
| citation_normalized_percentile.value | 0.90047728 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |