Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.01412
We present Noise-Directed Adaptive Remapping (NDAR), a heuristic algorithm for approximately solving binary optimization problems by leveraging certain types of noise. We consider access to a noisy quantum processor with dynamics that features a global attractor state. In a standard setting, such noise can be detrimental to the quantum optimization performance. Our algorithm bootstraps the noise attractor state by iteratively gauge-transforming the cost-function Hamiltonian in a way that transforms the noise attractor into higher-quality solutions. The transformation effectively changes the attractor into a higher-quality solution of the Hamiltonian based on the results of the previous step. The end result is that noise aids variational optimization, as opposed to hindering it. We present an improved Quantum Approximate Optimization Algorithm (QAOA) runs in experiments on Rigetti's quantum device. We report approximation ratios $0.9$-$0.96$ for random, fully connected graphs on $n=82$ qubits, using only depth $p=1$ QAOA with NDAR. This compares to $0.34$-$0.51$ for standard $p=1$ QAOA with the same number of function calls.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.01412
- https://arxiv.org/pdf/2404.01412
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393924656
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393924656Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.01412Digital Object Identifier
- Title
-
Improving Quantum Approximate Optimization by Noise-Directed Adaptive RemappingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-01Full publication date if available
- Authors
-
Filip B. Maciejewski, Jacob Biamonte, Stuart Hadfield, Davide VenturelliList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.01412Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.01412Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.01412Direct OA link when available
- Concepts
-
Noise (video), Computer science, Quantum, Mathematical optimization, Algorithm, Artificial intelligence, Mathematics, Physics, Quantum mechanics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393924656 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.01412 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.01412 |
| ids.openalex | https://openalex.org/W4393924656 |
| fwci | |
| type | preprint |
| title | Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10682 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Quantum Computing Algorithms and Architecture |
| topics[1].id | https://openalex.org/T10020 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Quantum Information and Cryptography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99498987 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6210340261459351 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[0].display_name | Noise (video) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5912487506866455 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C84114770 |
| concepts[2].level | 2 |
| concepts[2].score | 0.567762017250061 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[2].display_name | Quantum |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3399750590324402 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3251674175262451 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23413890600204468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22239258885383606 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22008734941482544 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12174904346466064 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/noise |
| keywords[0].score | 0.6210340261459351 |
| keywords[0].display_name | Noise (video) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5912487506866455 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/quantum |
| keywords[2].score | 0.567762017250061 |
| keywords[2].display_name | Quantum |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.3399750590324402 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.3251674175262451 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.23413890600204468 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.22239258885383606 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.22008734941482544 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[8].score | 0.12174904346466064 |
| keywords[8].display_name | Quantum mechanics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.01412 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.01412 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.01412 |
| locations[1].id | doi:10.48550/arxiv.2404.01412 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.01412 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015959426 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8503-1193 |
| authorships[0].author.display_name | Filip B. Maciejewski |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maciejewski, Filip B. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079523895 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0590-3327 |
| authorships[1].author.display_name | Jacob Biamonte |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Biamonte, Jacob |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5076190671 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4607-3921 |
| authorships[2].author.display_name | Stuart Hadfield |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hadfield, Stuart |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102985745 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0452-7603 |
| authorships[3].author.display_name | Davide Venturelli |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Venturelli, Davide |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.01412 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-05T00:00:00 |
| display_name | Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10682 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Quantum Computing Algorithms and Architecture |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.01412 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.01412 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.01412 |
| primary_location.id | pmh:oai:arXiv.org:2404.01412 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.01412 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.01412 |
| publication_date | 2024-04-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 25, 33, 38, 65, 82 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.We | 0, 21, 110, 126 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.as | 105 |
| abstract_inverted_index.be | 44 |
| abstract_inverted_index.by | 15, 58 |
| abstract_inverted_index.in | 64, 120 |
| abstract_inverted_index.is | 99 |
| abstract_inverted_index.of | 19, 85, 92, 158 |
| abstract_inverted_index.on | 89, 122, 136 |
| abstract_inverted_index.to | 24, 46, 107, 148 |
| abstract_inverted_index.Our | 51 |
| abstract_inverted_index.The | 75, 96 |
| abstract_inverted_index.can | 43 |
| abstract_inverted_index.end | 97 |
| abstract_inverted_index.for | 9, 131, 150 |
| abstract_inverted_index.it. | 109 |
| abstract_inverted_index.the | 47, 54, 61, 69, 79, 86, 90, 93, 155 |
| abstract_inverted_index.way | 66 |
| abstract_inverted_index.QAOA | 143, 153 |
| abstract_inverted_index.This | 146 |
| abstract_inverted_index.aids | 102 |
| abstract_inverted_index.into | 72, 81 |
| abstract_inverted_index.only | 140 |
| abstract_inverted_index.runs | 119 |
| abstract_inverted_index.same | 156 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.that | 31, 67, 100 |
| abstract_inverted_index.with | 29, 144, 154 |
| abstract_inverted_index.$p=1$ | 142, 152 |
| abstract_inverted_index.NDAR. | 145 |
| abstract_inverted_index.based | 88 |
| abstract_inverted_index.depth | 141 |
| abstract_inverted_index.fully | 133 |
| abstract_inverted_index.noise | 42, 55, 70, 101 |
| abstract_inverted_index.noisy | 26 |
| abstract_inverted_index.state | 57 |
| abstract_inverted_index.step. | 95 |
| abstract_inverted_index.types | 18 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.$n=82$ | 137 |
| abstract_inverted_index.(QAOA) | 118 |
| abstract_inverted_index.access | 23 |
| abstract_inverted_index.binary | 12 |
| abstract_inverted_index.calls. | 160 |
| abstract_inverted_index.global | 34 |
| abstract_inverted_index.graphs | 135 |
| abstract_inverted_index.noise. | 20 |
| abstract_inverted_index.number | 157 |
| abstract_inverted_index.ratios | 129 |
| abstract_inverted_index.report | 127 |
| abstract_inverted_index.result | 98 |
| abstract_inverted_index.state. | 36 |
| abstract_inverted_index.(NDAR), | 5 |
| abstract_inverted_index.Quantum | 114 |
| abstract_inverted_index.certain | 17 |
| abstract_inverted_index.changes | 78 |
| abstract_inverted_index.device. | 125 |
| abstract_inverted_index.opposed | 106 |
| abstract_inverted_index.present | 1, 111 |
| abstract_inverted_index.quantum | 27, 48, 124 |
| abstract_inverted_index.qubits, | 138 |
| abstract_inverted_index.random, | 132 |
| abstract_inverted_index.results | 91 |
| abstract_inverted_index.solving | 11 |
| abstract_inverted_index.Adaptive | 3 |
| abstract_inverted_index.compares | 147 |
| abstract_inverted_index.consider | 22 |
| abstract_inverted_index.dynamics | 30 |
| abstract_inverted_index.features | 32 |
| abstract_inverted_index.function | 159 |
| abstract_inverted_index.improved | 113 |
| abstract_inverted_index.previous | 94 |
| abstract_inverted_index.problems | 14 |
| abstract_inverted_index.setting, | 40 |
| abstract_inverted_index.solution | 84 |
| abstract_inverted_index.standard | 39, 151 |
| abstract_inverted_index.Algorithm | 117 |
| abstract_inverted_index.Remapping | 4 |
| abstract_inverted_index.Rigetti's | 123 |
| abstract_inverted_index.algorithm | 8, 52 |
| abstract_inverted_index.attractor | 35, 56, 71, 80 |
| abstract_inverted_index.connected | 134 |
| abstract_inverted_index.heuristic | 7 |
| abstract_inverted_index.hindering | 108 |
| abstract_inverted_index.processor | 28 |
| abstract_inverted_index.bootstraps | 53 |
| abstract_inverted_index.leveraging | 16 |
| abstract_inverted_index.solutions. | 74 |
| abstract_inverted_index.transforms | 68 |
| abstract_inverted_index.Approximate | 115 |
| abstract_inverted_index.Hamiltonian | 63, 87 |
| abstract_inverted_index.detrimental | 45 |
| abstract_inverted_index.effectively | 77 |
| abstract_inverted_index.experiments | 121 |
| abstract_inverted_index.iteratively | 59 |
| abstract_inverted_index.variational | 103 |
| abstract_inverted_index.$0.9$-$0.96$ | 130 |
| abstract_inverted_index.Optimization | 116 |
| abstract_inverted_index.optimization | 13, 49 |
| abstract_inverted_index.performance. | 50 |
| abstract_inverted_index.$0.34$-$0.51$ | 149 |
| abstract_inverted_index.approximately | 10 |
| abstract_inverted_index.approximation | 128 |
| abstract_inverted_index.cost-function | 62 |
| abstract_inverted_index.optimization, | 104 |
| abstract_inverted_index.Noise-Directed | 2 |
| abstract_inverted_index.higher-quality | 73, 83 |
| abstract_inverted_index.transformation | 76 |
| abstract_inverted_index.gauge-transforming | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |