Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations Article Swipe
Joel Brogan
,
Olivera Kotevska
,
Anibely Torres
,
Sumit Kumar Jha
,
Mark Adams
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.01532
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.01532
Signal analysis and classification is fraught with high levels of noise and perturbation. Computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and detection; however, these methods aren't designed to handle the low signal-to-noise ratios inherent within non-vision signal processing tasks. While they are powerful, they are currently not the method of choice in the inherently noisy and dynamic critical infrastructure domain, such as smart-grid sensing, anomaly detection, and non-intrusive load monitoring.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.01532
- https://arxiv.org/pdf/2409.01532
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402954854
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402954854Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.01532Digital Object Identifier
- Title
-
Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential EquationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-03Full publication date if available
- Authors
-
Joel Brogan, Olivera Kotevska, Anibely Torres, Sumit Kumar Jha, Mark AdamsList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.01532Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.01532Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.01532Direct OA link when available
- Concepts
-
Spectrogram, Robustness (evolution), Stochastic differential equation, Artificial neural network, Artificial intelligence, Computer science, Mathematics, Pattern recognition (psychology), Applied mathematics, Biology, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402954854 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.01532 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.01532 |
| ids.openalex | https://openalex.org/W4402954854 |
| fwci | |
| type | preprint |
| title | Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9725000262260437 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45273575 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8355295658111572 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[0].display_name | Spectrogram |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7238584160804749 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C51955184 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5282177925109863 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1545585 |
| concepts[2].display_name | Stochastic differential equation |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5053525567054749 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44307392835617065 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.42606693506240845 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41152840852737427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3387518525123596 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.31431710720062256 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0817735493183136 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/spectrogram |
| keywords[0].score | 0.8355295658111572 |
| keywords[0].display_name | Spectrogram |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7238584160804749 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/stochastic-differential-equation |
| keywords[2].score | 0.5282177925109863 |
| keywords[2].display_name | Stochastic differential equation |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5053525567054749 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44307392835617065 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.42606693506240845 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.41152840852737427 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3387518525123596 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.31431710720062256 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.0817735493183136 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.01532 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.01532 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.01532 |
| locations[1].id | doi:10.48550/arxiv.2409.01532 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.01532 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5041227417 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2069-7699 |
| authorships[0].author.display_name | Joel Brogan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brogan, Joel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021188335 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1677-2243 |
| authorships[1].author.display_name | Olivera Kotevska |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kotevska, Olivera |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109791588 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Anibely Torres |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Torres, Anibely |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075978538 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0354-2940 |
| authorships[3].author.display_name | Sumit Kumar Jha |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jha, Sumit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103101034 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5414-2800 |
| authorships[4].author.display_name | Mark Adams |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Adams, Mark |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.01532 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-29T00:00:00 |
| display_name | Improving Robustness of Spectrogram Classifiers with Neural Stochastic Differential Equations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9725000262260437 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2530685530, https://openalex.org/W4375868962, https://openalex.org/W2011227383, https://openalex.org/W2088854863, https://openalex.org/W4402568167, https://openalex.org/W3179495260, https://openalex.org/W1976719989, https://openalex.org/W3127543252, https://openalex.org/W2065606036, https://openalex.org/W2942893872 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.01532 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.01532 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.01532 |
| primary_location.id | pmh:oai:arXiv.org:2409.01532 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.01532 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.01532 |
| publication_date | 2024-09-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.in | 23, 60 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 9, 26, 58 |
| abstract_inverted_index.to | 18, 36 |
| abstract_inverted_index.and | 2, 11, 29, 64, 75 |
| abstract_inverted_index.are | 50, 53 |
| abstract_inverted_index.low | 39 |
| abstract_inverted_index.not | 55 |
| abstract_inverted_index.the | 24, 38, 56, 61 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.high | 7 |
| abstract_inverted_index.load | 77 |
| abstract_inverted_index.such | 69 |
| abstract_inverted_index.they | 49, 52 |
| abstract_inverted_index.with | 6 |
| abstract_inverted_index.While | 48 |
| abstract_inverted_index.field | 25 |
| abstract_inverted_index.noise | 10 |
| abstract_inverted_index.noisy | 63 |
| abstract_inverted_index.these | 32 |
| abstract_inverted_index.Signal | 0 |
| abstract_inverted_index.aren't | 34 |
| abstract_inverted_index.choice | 59 |
| abstract_inverted_index.handle | 37 |
| abstract_inverted_index.levels | 8 |
| abstract_inverted_index.method | 57 |
| abstract_inverted_index.models | 16 |
| abstract_inverted_index.proven | 21 |
| abstract_inverted_index.ratios | 41 |
| abstract_inverted_index.signal | 27, 45 |
| abstract_inverted_index.tasks. | 47 |
| abstract_inverted_index.useful | 22 |
| abstract_inverted_index.within | 43 |
| abstract_inverted_index.anomaly | 73 |
| abstract_inverted_index.applied | 17 |
| abstract_inverted_index.domain, | 68 |
| abstract_inverted_index.dynamic | 65 |
| abstract_inverted_index.fraught | 5 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.analysis | 1 |
| abstract_inverted_index.critical | 66 |
| abstract_inverted_index.designed | 35 |
| abstract_inverted_index.however, | 31 |
| abstract_inverted_index.inherent | 42 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.sensing, | 72 |
| abstract_inverted_index.currently | 54 |
| abstract_inverted_index.powerful, | 51 |
| abstract_inverted_index.detection, | 74 |
| abstract_inverted_index.detection; | 30 |
| abstract_inverted_index.inherently | 62 |
| abstract_inverted_index.non-vision | 44 |
| abstract_inverted_index.processing | 46 |
| abstract_inverted_index.smart-grid | 71 |
| abstract_inverted_index.monitoring. | 78 |
| abstract_inverted_index.spectrograms | 19 |
| abstract_inverted_index.non-intrusive | 76 |
| abstract_inverted_index.perturbation. | 12 |
| abstract_inverted_index.classification | 3, 28 |
| abstract_inverted_index.infrastructure | 67 |
| abstract_inverted_index.signal-to-noise | 40 |
| abstract_inverted_index.Computer-vision-based | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |