Improving Selective Visual Question Answering by Learning from Your Peers Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.08751
Despite advances in Visual Question Answering (VQA), the ability of models to assess their own correctness remains underexplored. Recent work has shown that VQA models, out-of-the-box, can have difficulties abstaining from answering when they are wrong. The option to abstain, also called Selective Prediction, is highly relevant when deploying systems to users who must trust the system's output (e.g., VQA assistants for users with visual impairments). For such scenarios, abstention can be especially important as users may provide out-of-distribution (OOD) or adversarial inputs that make incorrect answers more likely. In this work, we explore Selective VQA in both in-distribution (ID) and OOD scenarios, where models are presented with mixtures of ID and OOD data. The goal is to maximize the number of questions answered while minimizing the risk of error on those questions. We propose a simple yet effective Learning from Your Peers (LYP) approach for training multimodal selection functions for making abstention decisions. Our approach uses predictions from models trained on distinct subsets of the training data as targets for optimizing a Selective VQA model. It does not require additional manual labels or held-out data and provides a signal for identifying examples that are easy/difficult to generalize to. In our extensive evaluations, we show this benefits a number of models across different architectures and scales. Overall, for ID, we reach 32.92% in the selective prediction metric coverage at 1% risk of error (C@1%) which doubles the previous best coverage of 15.79% on this task. For mixed ID/OOD, using models' softmax confidences for abstention decisions performs very poorly, answering <5% of questions at 1% risk of error even when faced with only 10% OOD examples, but a learned selection function with LYP can increase that to 25.38% C@1%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.08751
- https://arxiv.org/pdf/2306.08751
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380993853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380993853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.08751Digital Object Identifier
- Title
-
Improving Selective Visual Question Answering by Learning from Your PeersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-14Full publication date if available
- Authors
-
Corentin Dancette, Spencer Whitehead, Rishabh Maheshwary, Ramakrishna Vedantam, Stefan Scherer, Xinlei Chen, Matthieu Cord, Marcus RohrbachList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.08751Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.08751Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.08751Direct OA link when available
- Concepts
-
Computer science, Question answering, Correctness, Machine learning, Metric (unit), Artificial intelligence, Adversarial system, Economics, Programming language, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380993853 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.08751 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.08751 |
| ids.openalex | https://openalex.org/W4380993853 |
| fwci | |
| type | preprint |
| title | Improving Selective Visual Question Answering by Learning from Your Peers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9559000134468079 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7635431289672852 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C44291984 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7083972096443176 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[1].display_name | Question answering |
| concepts[2].id | https://openalex.org/C55439883 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6677987575531006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q360812 |
| concepts[2].display_name | Correctness |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5831789970397949 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C176217482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5479526519775391 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[4].display_name | Metric (unit) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4794786870479584 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C37736160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41597995162010193 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[6].display_name | Adversarial system |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| concepts[9].id | https://openalex.org/C21547014 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[9].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7635431289672852 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/question-answering |
| keywords[1].score | 0.7083972096443176 |
| keywords[1].display_name | Question answering |
| keywords[2].id | https://openalex.org/keywords/correctness |
| keywords[2].score | 0.6677987575531006 |
| keywords[2].display_name | Correctness |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5831789970397949 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/metric |
| keywords[4].score | 0.5479526519775391 |
| keywords[4].display_name | Metric (unit) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4794786870479584 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/adversarial-system |
| keywords[6].score | 0.41597995162010193 |
| keywords[6].display_name | Adversarial system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.08751 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.08751 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.08751 |
| locations[1].id | doi:10.48550/arxiv.2306.08751 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.08751 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5046767053 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Corentin Dancette |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dancette, Corentin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076767045 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Spencer Whitehead |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Whitehead, Spencer |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086568118 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rishabh Maheshwary |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maheshwary, Rishabh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5041797310 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ramakrishna Vedantam |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vedantam, Ramakrishna |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5080030626 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0280-5393 |
| authorships[4].author.display_name | Stefan Scherer |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Scherer, Stefan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5109815438 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xinlei Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Xinlei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5108118084 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0627-5844 |
| authorships[6].author.display_name | Matthieu Cord |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Cord, Matthieu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5024481540 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5908-7751 |
| authorships[7].author.display_name | Marcus Rohrbach |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rohrbach, Marcus |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.08751 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-06-17T00:00:00 |
| display_name | Improving Selective Visual Question Answering by Learning from Your Peers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2502115930, https://openalex.org/W1667647204, https://openalex.org/W2404647514, https://openalex.org/W4247536566, https://openalex.org/W2482350142, https://openalex.org/W4246396837, https://openalex.org/W3126451824, https://openalex.org/W2018477250, https://openalex.org/W3119814709, https://openalex.org/W4241418540 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.08751 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.08751 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.08751 |
| primary_location.id | pmh:oai:arXiv.org:2306.08751 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.08751 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.08751 |
| publication_date | 2023-06-14 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 135, 172, 188, 207, 276 |
| abstract_inverted_index.1% | 229, 263 |
| abstract_inverted_index.ID | 110 |
| abstract_inverted_index.In | 89, 199 |
| abstract_inverted_index.It | 176 |
| abstract_inverted_index.We | 133 |
| abstract_inverted_index.as | 74, 168 |
| abstract_inverted_index.at | 228, 262 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.in | 2, 96, 222 |
| abstract_inverted_index.is | 44, 116 |
| abstract_inverted_index.of | 9, 109, 121, 128, 164, 209, 231, 240, 260, 265 |
| abstract_inverted_index.on | 130, 161, 242 |
| abstract_inverted_index.or | 80, 183 |
| abstract_inverted_index.to | 11, 38, 50, 117, 196, 285 |
| abstract_inverted_index.we | 92, 203, 219 |
| abstract_inverted_index.10% | 272 |
| abstract_inverted_index.For | 66, 245 |
| abstract_inverted_index.ID, | 218 |
| abstract_inverted_index.LYP | 281 |
| abstract_inverted_index.OOD | 101, 112, 273 |
| abstract_inverted_index.Our | 154 |
| abstract_inverted_index.The | 36, 114 |
| abstract_inverted_index.VQA | 23, 59, 95, 174 |
| abstract_inverted_index.and | 100, 111, 186, 214 |
| abstract_inverted_index.are | 34, 105, 194 |
| abstract_inverted_index.but | 275 |
| abstract_inverted_index.can | 26, 70, 282 |
| abstract_inverted_index.for | 61, 145, 150, 170, 190, 217, 252 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.may | 76 |
| abstract_inverted_index.not | 178 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.own | 14 |
| abstract_inverted_index.the | 7, 55, 119, 126, 165, 223, 236 |
| abstract_inverted_index.to. | 198 |
| abstract_inverted_index.who | 52 |
| abstract_inverted_index.yet | 137 |
| abstract_inverted_index.(ID) | 99 |
| abstract_inverted_index.Your | 141 |
| abstract_inverted_index.also | 40 |
| abstract_inverted_index.best | 238 |
| abstract_inverted_index.both | 97 |
| abstract_inverted_index.data | 167, 185 |
| abstract_inverted_index.does | 177 |
| abstract_inverted_index.even | 267 |
| abstract_inverted_index.from | 30, 140, 158 |
| abstract_inverted_index.goal | 115 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.make | 84 |
| abstract_inverted_index.more | 87 |
| abstract_inverted_index.must | 53 |
| abstract_inverted_index.only | 271 |
| abstract_inverted_index.risk | 127, 230, 264 |
| abstract_inverted_index.show | 204 |
| abstract_inverted_index.such | 67 |
| abstract_inverted_index.that | 22, 83, 193, 284 |
| abstract_inverted_index.they | 33 |
| abstract_inverted_index.this | 90, 205, 243 |
| abstract_inverted_index.uses | 156 |
| abstract_inverted_index.very | 256 |
| abstract_inverted_index.when | 32, 47, 268 |
| abstract_inverted_index.with | 63, 107, 270, 280 |
| abstract_inverted_index.work | 19 |
| abstract_inverted_index.(LYP) | 143 |
| abstract_inverted_index.(OOD) | 79 |
| abstract_inverted_index.C@1%. | 287 |
| abstract_inverted_index.Peers | 142 |
| abstract_inverted_index.data. | 113 |
| abstract_inverted_index.error | 129, 232, 266 |
| abstract_inverted_index.faced | 269 |
| abstract_inverted_index.mixed | 246 |
| abstract_inverted_index.reach | 220 |
| abstract_inverted_index.shown | 21 |
| abstract_inverted_index.task. | 244 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.those | 131 |
| abstract_inverted_index.trust | 54 |
| abstract_inverted_index.users | 51, 62, 75 |
| abstract_inverted_index.using | 248 |
| abstract_inverted_index.where | 103 |
| abstract_inverted_index.which | 234 |
| abstract_inverted_index.while | 124 |
| abstract_inverted_index.work, | 91 |
| abstract_inverted_index.<5% | 259 |
| abstract_inverted_index.(C@1%) | 233 |
| abstract_inverted_index.(VQA), | 6 |
| abstract_inverted_index.(e.g., | 58 |
| abstract_inverted_index.15.79% | 241 |
| abstract_inverted_index.25.38% | 286 |
| abstract_inverted_index.32.92% | 221 |
| abstract_inverted_index.Recent | 18 |
| abstract_inverted_index.Visual | 3 |
| abstract_inverted_index.across | 211 |
| abstract_inverted_index.assess | 12 |
| abstract_inverted_index.called | 41 |
| abstract_inverted_index.highly | 45 |
| abstract_inverted_index.inputs | 82 |
| abstract_inverted_index.labels | 182 |
| abstract_inverted_index.making | 151 |
| abstract_inverted_index.manual | 181 |
| abstract_inverted_index.metric | 226 |
| abstract_inverted_index.model. | 175 |
| abstract_inverted_index.models | 10, 104, 159, 210 |
| abstract_inverted_index.number | 120, 208 |
| abstract_inverted_index.option | 37 |
| abstract_inverted_index.output | 57 |
| abstract_inverted_index.signal | 189 |
| abstract_inverted_index.simple | 136 |
| abstract_inverted_index.visual | 64 |
| abstract_inverted_index.wrong. | 35 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.ID/OOD, | 247 |
| abstract_inverted_index.ability | 8 |
| abstract_inverted_index.answers | 86 |
| abstract_inverted_index.doubles | 235 |
| abstract_inverted_index.explore | 93 |
| abstract_inverted_index.learned | 277 |
| abstract_inverted_index.likely. | 88 |
| abstract_inverted_index.models' | 249 |
| abstract_inverted_index.models, | 24 |
| abstract_inverted_index.poorly, | 257 |
| abstract_inverted_index.propose | 134 |
| abstract_inverted_index.provide | 77 |
| abstract_inverted_index.remains | 16 |
| abstract_inverted_index.require | 179 |
| abstract_inverted_index.scales. | 215 |
| abstract_inverted_index.softmax | 250 |
| abstract_inverted_index.subsets | 163 |
| abstract_inverted_index.systems | 49 |
| abstract_inverted_index.targets | 169 |
| abstract_inverted_index.trained | 160 |
| abstract_inverted_index.Learning | 139 |
| abstract_inverted_index.Overall, | 216 |
| abstract_inverted_index.Question | 4 |
| abstract_inverted_index.abstain, | 39 |
| abstract_inverted_index.advances | 1 |
| abstract_inverted_index.answered | 123 |
| abstract_inverted_index.approach | 144, 155 |
| abstract_inverted_index.benefits | 206 |
| abstract_inverted_index.coverage | 227, 239 |
| abstract_inverted_index.distinct | 162 |
| abstract_inverted_index.examples | 192 |
| abstract_inverted_index.function | 279 |
| abstract_inverted_index.held-out | 184 |
| abstract_inverted_index.increase | 283 |
| abstract_inverted_index.maximize | 118 |
| abstract_inverted_index.mixtures | 108 |
| abstract_inverted_index.performs | 255 |
| abstract_inverted_index.previous | 237 |
| abstract_inverted_index.provides | 187 |
| abstract_inverted_index.relevant | 46 |
| abstract_inverted_index.system's | 56 |
| abstract_inverted_index.training | 146, 166 |
| abstract_inverted_index.Answering | 5 |
| abstract_inverted_index.Selective | 42, 94, 173 |
| abstract_inverted_index.answering | 31, 258 |
| abstract_inverted_index.decisions | 254 |
| abstract_inverted_index.deploying | 48 |
| abstract_inverted_index.different | 212 |
| abstract_inverted_index.effective | 138 |
| abstract_inverted_index.examples, | 274 |
| abstract_inverted_index.extensive | 201 |
| abstract_inverted_index.functions | 149 |
| abstract_inverted_index.important | 73 |
| abstract_inverted_index.incorrect | 85 |
| abstract_inverted_index.presented | 106 |
| abstract_inverted_index.questions | 122, 261 |
| abstract_inverted_index.selection | 148, 278 |
| abstract_inverted_index.selective | 224 |
| abstract_inverted_index.abstaining | 29 |
| abstract_inverted_index.abstention | 69, 152, 253 |
| abstract_inverted_index.additional | 180 |
| abstract_inverted_index.assistants | 60 |
| abstract_inverted_index.decisions. | 153 |
| abstract_inverted_index.especially | 72 |
| abstract_inverted_index.generalize | 197 |
| abstract_inverted_index.minimizing | 125 |
| abstract_inverted_index.multimodal | 147 |
| abstract_inverted_index.optimizing | 171 |
| abstract_inverted_index.prediction | 225 |
| abstract_inverted_index.questions. | 132 |
| abstract_inverted_index.scenarios, | 68, 102 |
| abstract_inverted_index.Prediction, | 43 |
| abstract_inverted_index.adversarial | 81 |
| abstract_inverted_index.confidences | 251 |
| abstract_inverted_index.correctness | 15 |
| abstract_inverted_index.identifying | 191 |
| abstract_inverted_index.predictions | 157 |
| abstract_inverted_index.difficulties | 28 |
| abstract_inverted_index.evaluations, | 202 |
| abstract_inverted_index.architectures | 213 |
| abstract_inverted_index.impairments). | 65 |
| abstract_inverted_index.easy/difficult | 195 |
| abstract_inverted_index.underexplored. | 17 |
| abstract_inverted_index.in-distribution | 98 |
| abstract_inverted_index.out-of-the-box, | 25 |
| abstract_inverted_index.out-of-distribution | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |