Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3389/fonc.2024.1320220
Background Our previous studies have demonstrated that Raman spectroscopy could be used for skin cancer detection with good sensitivity and specificity. The objective of this study is to determine if skin cancer detection can be further improved by combining deep neural networks and Raman spectroscopy. Patients and methods Raman spectra of 731 skin lesions were included in this study, containing 340 cancerous and precancerous lesions (melanoma, basal cell carcinoma, squamous cell carcinoma and actinic keratosis) and 391 benign lesions (melanocytic nevus and seborrheic keratosis). One-dimensional convolutional neural networks (1D-CNN) were developed for Raman spectral classification. The stratified samples were divided randomly into training (70%), validation (10%) and test set (20%), and were repeated 56 times using parallel computing. Different data augmentation strategies were implemented for the training dataset, including added random noise, spectral shift, spectral combination and artificially synthesized Raman spectra using one-dimensional generative adversarial networks (1D-GAN). The area under the receiver operating characteristic curve (ROC AUC) was used as a measure of the diagnostic performance. Conventional machine learning approaches, including partial least squares for discriminant analysis (PLS-DA), principal component and linear discriminant analysis (PC-LDA), support vector machine (SVM), and logistic regression (LR) were evaluated for comparison with the same data splitting scheme as the 1D-CNN. Results The ROC AUC of the test dataset based on the original training spectra were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033 (PC-LDA), 0.864±0.027 (SVM), and 0.525±0.045 (LR), which were improved to 0.909±0.021 (1D-CNN), 0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901±0.020 (SVM), and 0.897±0.021 (LR) respectively after augmentation of the training dataset (p<0.0001, Wilcoxon test). Paired analyses of 1D-CNN with conventional machine learning approaches showed that 1D-CNN had a 1–3% improvement (p<0.001, Wilcoxon test). Conclusions Data augmentation not only improved the performance of both deep neural networks and conventional machine learning techniques by 2–4%, but also improved the performance of the models on spectra with higher noise or spectral shifting. Convolutional neural networks slightly outperformed conventional machine learning approaches for skin cancer detection by Raman spectroscopy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fonc.2024.1320220
- https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdf
- OA Status
- gold
- Cited By
- 16
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399821708
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399821708Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fonc.2024.1320220Digital Object Identifier
- Title
-
Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-19Full publication date if available
- Authors
-
Jianhua Zhao, Harvey Lui, Sunil Kalia, Tim K. Lee, Haishan ZengList of authors in order
- Landing page
-
https://doi.org/10.3389/fonc.2024.1320220Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdfDirect OA link when available
- Concepts
-
Receiver operating characteristic, Artificial intelligence, Linear discriminant analysis, Pattern recognition (psychology), Convolutional neural network, Principal component analysis, Support vector machine, Computer science, Raman spectroscopy, Pooling, Basal cell carcinoma, Mathematics, Machine learning, Medicine, Pathology, Physics, Basal cell, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399821708 |
|---|---|
| doi | https://doi.org/10.3389/fonc.2024.1320220 |
| ids.doi | https://doi.org/10.3389/fonc.2024.1320220 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38962264 |
| ids.openalex | https://openalex.org/W4399821708 |
| fwci | 73.00359132 |
| type | article |
| title | Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentation |
| awards[0].id | https://openalex.org/G7538790542 |
| awards[0].funder_id | https://openalex.org/F4320320118 |
| awards[0].display_name | |
| awards[0].funder_award_id | 011031, 015053 |
| awards[0].funder_display_name | Canadian Cancer Society |
| awards[1].id | https://openalex.org/G712842903 |
| awards[1].funder_id | https://openalex.org/F4320334506 |
| awards[1].display_name | |
| awards[1].funder_award_id | PP2-111527 |
| awards[1].funder_display_name | Canadian Institutes of Health Research |
| biblio.issue | |
| biblio.volume | 14 |
| biblio.last_page | 1320220 |
| biblio.first_page | 1320220 |
| topics[0].id | https://openalex.org/T11324 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10392 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2730 |
| topics[2].subfield.display_name | Oncology |
| topics[2].display_name | Cutaneous Melanoma Detection and Management |
| funders[0].id | https://openalex.org/F4320309828 |
| funders[0].ror | https://ror.org/00env1778 |
| funders[0].display_name | Canadian Dermatology Foundation |
| funders[1].id | https://openalex.org/F4320315335 |
| funders[1].ror | |
| funders[1].display_name | VGH and UBC Hospital Foundation |
| funders[2].id | https://openalex.org/F4320320118 |
| funders[2].ror | https://ror.org/017343w90 |
| funders[2].display_name | Canadian Cancer Society |
| funders[3].id | https://openalex.org/F4320321451 |
| funders[3].ror | https://ror.org/01x6ma944 |
| funders[3].display_name | BC Hydro |
| funders[4].id | https://openalex.org/F4320323180 |
| funders[4].ror | https://ror.org/03rmrcq20 |
| funders[4].display_name | University of British Columbia |
| funders[5].id | https://openalex.org/F4320334506 |
| funders[5].ror | https://ror.org/01gavpb45 |
| funders[5].display_name | Canadian Institutes of Health Research |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C58471807 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7171356678009033 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[0].display_name | Receiver operating characteristic |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7096870541572571 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C69738355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6118330359458923 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[2].display_name | Linear discriminant analysis |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5762189626693726 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5489851832389832 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C27438332 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5101964473724365 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[5].display_name | Principal component analysis |
| concepts[6].id | https://openalex.org/C12267149 |
| concepts[6].level | 2 |
| concepts[6].score | 0.501946210861206 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[6].display_name | Support vector machine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47570663690567017 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C40003534 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47416889667510986 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q862228 |
| concepts[8].display_name | Raman spectroscopy |
| concepts[9].id | https://openalex.org/C70437156 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4382038116455078 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[9].display_name | Pooling |
| concepts[10].id | https://openalex.org/C2778804307 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4305022358894348 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q809758 |
| concepts[10].display_name | Basal cell carcinoma |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3694470524787903 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2551761269569397 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.23851275444030762 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21403422951698303 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.19285401701927185 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C3019992690 |
| concepts[16].level | 2 |
| concepts[16].score | 0.18834131956100464 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q92767510 |
| concepts[16].display_name | Basal cell |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.16086634993553162 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[0].score | 0.7171356678009033 |
| keywords[0].display_name | Receiver operating characteristic |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7096870541572571 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[2].score | 0.6118330359458923 |
| keywords[2].display_name | Linear discriminant analysis |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5762189626693726 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5489851832389832 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[5].score | 0.5101964473724365 |
| keywords[5].display_name | Principal component analysis |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.501946210861206 |
| keywords[6].display_name | Support vector machine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.47570663690567017 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/raman-spectroscopy |
| keywords[8].score | 0.47416889667510986 |
| keywords[8].display_name | Raman spectroscopy |
| keywords[9].id | https://openalex.org/keywords/pooling |
| keywords[9].score | 0.4382038116455078 |
| keywords[9].display_name | Pooling |
| keywords[10].id | https://openalex.org/keywords/basal-cell-carcinoma |
| keywords[10].score | 0.4305022358894348 |
| keywords[10].display_name | Basal cell carcinoma |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3694470524787903 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.2551761269569397 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.23851275444030762 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/pathology |
| keywords[14].score | 0.21403422951698303 |
| keywords[14].display_name | Pathology |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.19285401701927185 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/basal-cell |
| keywords[16].score | 0.18834131956100464 |
| keywords[16].display_name | Basal cell |
| keywords[17].id | https://openalex.org/keywords/optics |
| keywords[17].score | 0.16086634993553162 |
| keywords[17].display_name | Optics |
| language | en |
| locations[0].id | doi:10.3389/fonc.2024.1320220 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596394214 |
| locations[0].source.issn | 2234-943X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2234-943X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Oncology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Oncology |
| locations[0].landing_page_url | https://doi.org/10.3389/fonc.2024.1320220 |
| locations[1].id | pmid:38962264 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in oncology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38962264 |
| locations[2].id | pmh:oai:doaj.org/article:4593eff9618a4b9db2529f1d73715d3f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Oncology, Vol 14 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/4593eff9618a4b9db2529f1d73715d3f |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11219827 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Oncol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11219827 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5001001511 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9848-0983 |
| authorships[0].author.display_name | Jianhua Zhao |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| authorships[0].affiliations[0].raw_affiliation_string | Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I141945490 |
| authorships[0].affiliations[1].raw_affiliation_string | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I141945490 |
| authorships[0].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of British Columbia |
| authorships[0].institutions[1].id | https://openalex.org/I141074466 |
| authorships[0].institutions[1].ror | https://ror.org/03bd8jh67 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I141074466 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Vancouver Coastal Health |
| authorships[0].institutions[2].id | https://openalex.org/I4210150180 |
| authorships[0].institutions[2].ror | https://ror.org/04htzww22 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[0].institutions[2].country_code | CA |
| authorships[0].institutions[2].display_name | Vancouver Coastal Health Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jianhua Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada, Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[1].author.id | https://openalex.org/A5021772111 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0584-5980 |
| authorships[1].author.display_name | Harvey Lui |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| authorships[1].affiliations[0].raw_affiliation_string | Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[1].raw_affiliation_string | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].institutions[1].id | https://openalex.org/I141074466 |
| authorships[1].institutions[1].ror | https://ror.org/03bd8jh67 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I141074466 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | Vancouver Coastal Health |
| authorships[1].institutions[2].id | https://openalex.org/I4210150180 |
| authorships[1].institutions[2].ror | https://ror.org/04htzww22 |
| authorships[1].institutions[2].type | facility |
| authorships[1].institutions[2].lineage | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[1].institutions[2].country_code | CA |
| authorships[1].institutions[2].display_name | Vancouver Coastal Health Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Harvey Lui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada, Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[2].author.id | https://openalex.org/A5089195756 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5271-5273 |
| authorships[2].author.display_name | Sunil Kalia |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| authorships[2].affiliations[0].raw_affiliation_string | Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210153200 |
| authorships[2].affiliations[1].raw_affiliation_string | BC Children's Hospital Research Institute, Vancouver, BC, Canada |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[2].affiliations[2].raw_affiliation_string | Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I4210153200 |
| authorships[2].institutions[0].ror | https://ror.org/04n901w50 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153200 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | BC Children's Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I141945490 |
| authorships[2].institutions[1].ror | https://ror.org/03rmrcq20 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[2].institutions[1].country_code | CA |
| authorships[2].institutions[1].display_name | University of British Columbia |
| authorships[2].institutions[2].id | https://openalex.org/I141074466 |
| authorships[2].institutions[2].ror | https://ror.org/03bd8jh67 |
| authorships[2].institutions[2].type | healthcare |
| authorships[2].institutions[2].lineage | https://openalex.org/I141074466 |
| authorships[2].institutions[2].country_code | CA |
| authorships[2].institutions[2].display_name | Vancouver Coastal Health |
| authorships[2].institutions[3].id | https://openalex.org/I4210150180 |
| authorships[2].institutions[3].ror | https://ror.org/04htzww22 |
| authorships[2].institutions[3].type | facility |
| authorships[2].institutions[3].lineage | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[2].institutions[3].country_code | CA |
| authorships[2].institutions[3].display_name | Vancouver Coastal Health Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sunil Kalia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | BC Children's Hospital Research Institute, Vancouver, BC, Canada, Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada, Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[3].author.id | https://openalex.org/A5087105596 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0157-2081 |
| authorships[3].author.display_name | Tim K. Lee |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[3].affiliations[0].raw_affiliation_string | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| authorships[3].affiliations[1].raw_affiliation_string | Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I141945490 |
| authorships[3].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of British Columbia |
| authorships[3].institutions[1].id | https://openalex.org/I141074466 |
| authorships[3].institutions[1].ror | https://ror.org/03bd8jh67 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I141074466 |
| authorships[3].institutions[1].country_code | CA |
| authorships[3].institutions[1].display_name | Vancouver Coastal Health |
| authorships[3].institutions[2].id | https://openalex.org/I4210150180 |
| authorships[3].institutions[2].ror | https://ror.org/04htzww22 |
| authorships[3].institutions[2].type | facility |
| authorships[3].institutions[2].lineage | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[3].institutions[2].country_code | CA |
| authorships[3].institutions[2].display_name | Vancouver Coastal Health Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tim K. Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada, Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[4].author.id | https://openalex.org/A5034358596 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3557-2407 |
| authorships[4].author.display_name | Haishan Zeng |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[4].affiliations[0].raw_affiliation_string | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| authorships[4].affiliations[1].raw_affiliation_string | Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I141945490 |
| authorships[4].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of British Columbia |
| authorships[4].institutions[1].id | https://openalex.org/I141074466 |
| authorships[4].institutions[1].ror | https://ror.org/03bd8jh67 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I141074466 |
| authorships[4].institutions[1].country_code | CA |
| authorships[4].institutions[1].display_name | Vancouver Coastal Health |
| authorships[4].institutions[2].id | https://openalex.org/I4210150180 |
| authorships[4].institutions[2].ror | https://ror.org/04htzww22 |
| authorships[4].institutions[2].type | facility |
| authorships[4].institutions[2].lineage | https://openalex.org/I141074466, https://openalex.org/I4210150180 |
| authorships[4].institutions[2].country_code | CA |
| authorships[4].institutions[2].display_name | Vancouver Coastal Health Research Institute |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Haishan Zeng |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada, Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving skin cancer detection by Raman spectroscopy using convolutional neural networks and data augmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11324 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| related_works | https://openalex.org/W2052589448, https://openalex.org/W2765337000, https://openalex.org/W3104072235, https://openalex.org/W2391447249, https://openalex.org/W2312955079, https://openalex.org/W2350996391, https://openalex.org/W2066119650, https://openalex.org/W2059615944, https://openalex.org/W4224057882, https://openalex.org/W2121545841 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fonc.2024.1320220 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596394214 |
| best_oa_location.source.issn | 2234-943X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2234-943X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Oncology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Oncology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fonc.2024.1320220 |
| primary_location.id | doi:10.3389/fonc.2024.1320220 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596394214 |
| primary_location.source.issn | 2234-943X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2234-943X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Oncology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1320220/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Oncology |
| primary_location.landing_page_url | https://doi.org/10.3389/fonc.2024.1320220 |
| publication_date | 2024-06-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4220736910, https://openalex.org/W72597293, https://openalex.org/W2005636037, https://openalex.org/W2743381714, https://openalex.org/W2226029907, https://openalex.org/W2986081496, https://openalex.org/W2028220066, https://openalex.org/W2128186581, https://openalex.org/W2744658455, https://openalex.org/W2165376328, https://openalex.org/W2128756499, https://openalex.org/W1972842018, https://openalex.org/W2539662274, https://openalex.org/W1506236829, https://openalex.org/W2501524741, https://openalex.org/W2041914157, https://openalex.org/W2742715412, https://openalex.org/W4310809172, https://openalex.org/W2005017605, https://openalex.org/W2074457543, https://openalex.org/W1998417489, https://openalex.org/W2744931943, https://openalex.org/W2611625468, https://openalex.org/W2799693680, https://openalex.org/W2091402301, https://openalex.org/W1966524732, https://openalex.org/W2161354548, https://openalex.org/W1995001633, https://openalex.org/W3126486816, https://openalex.org/W4220809634, https://openalex.org/W2587912562, https://openalex.org/W2059118850, https://openalex.org/W4244575309, https://openalex.org/W2041546381, https://openalex.org/W2735729160, https://openalex.org/W2098634475, https://openalex.org/W1968871412, https://openalex.org/W2905529905, https://openalex.org/W1571376410, https://openalex.org/W1972230007, https://openalex.org/W1999282018, https://openalex.org/W2581082771, https://openalex.org/W3011261001, https://openalex.org/W4285796506, https://openalex.org/W3036298167, https://openalex.org/W6790798067, https://openalex.org/W3118836895, https://openalex.org/W4281655435, https://openalex.org/W3001461994, https://openalex.org/W3120420778, https://openalex.org/W3135918002, https://openalex.org/W3163010649, https://openalex.org/W3138323391, https://openalex.org/W3120371860, https://openalex.org/W2909516836, https://openalex.org/W2970353953, https://openalex.org/W3095570060, https://openalex.org/W4206975137, https://openalex.org/W2091998550, https://openalex.org/W2962858109, https://openalex.org/W2954996726, https://openalex.org/W2775795276, https://openalex.org/W2809598685, https://openalex.org/W2752532133, https://openalex.org/W2762818368, https://openalex.org/W4226483884, https://openalex.org/W3015097418, https://openalex.org/W3029477994, https://openalex.org/W2304648132, https://openalex.org/W2964121744, https://openalex.org/W3210254907, https://openalex.org/W2564339002, https://openalex.org/W4307005305, https://openalex.org/W2295097024, https://openalex.org/W2089842689, https://openalex.org/W3176923149, https://openalex.org/W3129227081 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 160, 270 |
| abstract_inverted_index.56 | 113 |
| abstract_inverted_index.as | 159, 203 |
| abstract_inverted_index.be | 10, 34 |
| abstract_inverted_index.by | 37, 294, 325 |
| abstract_inverted_index.if | 29 |
| abstract_inverted_index.in | 56 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.of | 23, 50, 162, 210, 250, 259, 284, 301 |
| abstract_inverted_index.on | 215, 304 |
| abstract_inverted_index.or | 309 |
| abstract_inverted_index.to | 27, 235 |
| abstract_inverted_index.340 | 60 |
| abstract_inverted_index.391 | 76 |
| abstract_inverted_index.731 | 51 |
| abstract_inverted_index.AUC | 209 |
| abstract_inverted_index.Our | 1 |
| abstract_inverted_index.ROC | 208 |
| abstract_inverted_index.The | 21, 95, 147, 207 |
| abstract_inverted_index.and | 19, 42, 46, 62, 72, 75, 81, 106, 110, 136, 180, 189, 229, 244, 289 |
| abstract_inverted_index.but | 296 |
| abstract_inverted_index.can | 33 |
| abstract_inverted_index.for | 12, 91, 124, 174, 195, 321 |
| abstract_inverted_index.had | 269 |
| abstract_inverted_index.not | 279 |
| abstract_inverted_index.set | 108 |
| abstract_inverted_index.the | 125, 150, 163, 198, 204, 211, 216, 251, 282, 299, 302 |
| abstract_inverted_index.was | 157 |
| abstract_inverted_index.(LR) | 192, 246 |
| abstract_inverted_index.(ROC | 155 |
| abstract_inverted_index.AUC) | 156 |
| abstract_inverted_index.Data | 277 |
| abstract_inverted_index.also | 297 |
| abstract_inverted_index.area | 148 |
| abstract_inverted_index.both | 285 |
| abstract_inverted_index.cell | 67, 70 |
| abstract_inverted_index.data | 119, 200 |
| abstract_inverted_index.deep | 39, 286 |
| abstract_inverted_index.good | 17 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.only | 280 |
| abstract_inverted_index.same | 199 |
| abstract_inverted_index.skin | 13, 30, 52, 322 |
| abstract_inverted_index.test | 107, 212 |
| abstract_inverted_index.that | 6, 267 |
| abstract_inverted_index.this | 24, 57 |
| abstract_inverted_index.used | 11, 158 |
| abstract_inverted_index.were | 54, 89, 98, 111, 122, 193, 220, 233 |
| abstract_inverted_index.with | 16, 197, 261, 306 |
| abstract_inverted_index.(10%) | 105 |
| abstract_inverted_index.(LR), | 231 |
| abstract_inverted_index.Raman | 7, 43, 48, 92, 139, 326 |
| abstract_inverted_index.added | 129 |
| abstract_inverted_index.after | 248 |
| abstract_inverted_index.basal | 66 |
| abstract_inverted_index.based | 214 |
| abstract_inverted_index.could | 9 |
| abstract_inverted_index.curve | 154 |
| abstract_inverted_index.least | 172 |
| abstract_inverted_index.nevus | 80 |
| abstract_inverted_index.noise | 308 |
| abstract_inverted_index.study | 25 |
| abstract_inverted_index.times | 114 |
| abstract_inverted_index.under | 149 |
| abstract_inverted_index.using | 115, 141 |
| abstract_inverted_index.which | 232 |
| abstract_inverted_index.(20%), | 109 |
| abstract_inverted_index.(70%), | 103 |
| abstract_inverted_index.(SVM), | 188, 228, 243 |
| abstract_inverted_index.1D-CNN | 260, 268 |
| abstract_inverted_index.1–3% | 271 |
| abstract_inverted_index.Paired | 257 |
| abstract_inverted_index.benign | 77 |
| abstract_inverted_index.cancer | 14, 31, 323 |
| abstract_inverted_index.higher | 307 |
| abstract_inverted_index.linear | 181 |
| abstract_inverted_index.models | 303 |
| abstract_inverted_index.neural | 40, 86, 287, 313 |
| abstract_inverted_index.noise, | 131 |
| abstract_inverted_index.random | 130 |
| abstract_inverted_index.scheme | 202 |
| abstract_inverted_index.shift, | 133 |
| abstract_inverted_index.showed | 266 |
| abstract_inverted_index.study, | 58 |
| abstract_inverted_index.test). | 256, 275 |
| abstract_inverted_index.vector | 186 |
| abstract_inverted_index.1D-CNN. | 205 |
| abstract_inverted_index.2–4%, | 295 |
| abstract_inverted_index.Results | 206 |
| abstract_inverted_index.actinic | 73 |
| abstract_inverted_index.dataset | 213, 253 |
| abstract_inverted_index.divided | 99 |
| abstract_inverted_index.further | 35 |
| abstract_inverted_index.lesions | 53, 64, 78 |
| abstract_inverted_index.machine | 167, 187, 263, 291, 318 |
| abstract_inverted_index.measure | 161 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.partial | 171 |
| abstract_inverted_index.samples | 97 |
| abstract_inverted_index.spectra | 49, 140, 219, 305 |
| abstract_inverted_index.squares | 173 |
| abstract_inverted_index.studies | 3 |
| abstract_inverted_index.support | 185 |
| abstract_inverted_index.(1D-CNN) | 88 |
| abstract_inverted_index.Patients | 45 |
| abstract_inverted_index.Wilcoxon | 255, 274 |
| abstract_inverted_index.analyses | 258 |
| abstract_inverted_index.analysis | 176, 183 |
| abstract_inverted_index.dataset, | 127 |
| abstract_inverted_index.improved | 36, 234, 281, 298 |
| abstract_inverted_index.included | 55 |
| abstract_inverted_index.learning | 168, 264, 292, 319 |
| abstract_inverted_index.logistic | 190 |
| abstract_inverted_index.networks | 41, 87, 145, 288, 314 |
| abstract_inverted_index.original | 217 |
| abstract_inverted_index.parallel | 116 |
| abstract_inverted_index.previous | 2 |
| abstract_inverted_index.randomly | 100 |
| abstract_inverted_index.receiver | 151 |
| abstract_inverted_index.repeated | 112 |
| abstract_inverted_index.slightly | 315 |
| abstract_inverted_index.spectral | 93, 132, 134, 310 |
| abstract_inverted_index.squamous | 69 |
| abstract_inverted_index.training | 102, 126, 218, 252 |
| abstract_inverted_index.(1D-CNN), | 222, 237 |
| abstract_inverted_index.(1D-GAN). | 146 |
| abstract_inverted_index.(PC-LDA), | 184, 226, 241 |
| abstract_inverted_index.(PLS-DA), | 177, 224, 239 |
| abstract_inverted_index.Different | 118 |
| abstract_inverted_index.cancerous | 61 |
| abstract_inverted_index.carcinoma | 71 |
| abstract_inverted_index.combining | 38 |
| abstract_inverted_index.component | 179 |
| abstract_inverted_index.detection | 15, 32, 324 |
| abstract_inverted_index.determine | 28 |
| abstract_inverted_index.developed | 90 |
| abstract_inverted_index.evaluated | 194 |
| abstract_inverted_index.including | 128, 170 |
| abstract_inverted_index.objective | 22 |
| abstract_inverted_index.operating | 152 |
| abstract_inverted_index.principal | 178 |
| abstract_inverted_index.shifting. | 311 |
| abstract_inverted_index.splitting | 201 |
| abstract_inverted_index.(melanoma, | 65 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.approaches | 265, 320 |
| abstract_inverted_index.carcinoma, | 68 |
| abstract_inverted_index.comparison | 196 |
| abstract_inverted_index.computing. | 117 |
| abstract_inverted_index.containing | 59 |
| abstract_inverted_index.diagnostic | 164 |
| abstract_inverted_index.generative | 143 |
| abstract_inverted_index.keratosis) | 74 |
| abstract_inverted_index.regression | 191 |
| abstract_inverted_index.seborrheic | 82 |
| abstract_inverted_index.strategies | 121 |
| abstract_inverted_index.stratified | 96 |
| abstract_inverted_index.techniques | 293 |
| abstract_inverted_index.validation | 104 |
| abstract_inverted_index.Conclusions | 276 |
| abstract_inverted_index.adversarial | 144 |
| abstract_inverted_index.approaches, | 169 |
| abstract_inverted_index.combination | 135 |
| abstract_inverted_index.implemented | 123 |
| abstract_inverted_index.improvement | 272 |
| abstract_inverted_index.keratosis). | 83 |
| abstract_inverted_index.performance | 283, 300 |
| abstract_inverted_index.sensitivity | 18 |
| abstract_inverted_index.synthesized | 138 |
| abstract_inverted_index.(melanocytic | 79 |
| abstract_inverted_index.0.525±0.045 | 230 |
| abstract_inverted_index.0.864±0.027 | 227 |
| abstract_inverted_index.0.870±0.028 | 223 |
| abstract_inverted_index.0.875±0.033 | 225 |
| abstract_inverted_index.0.886±0.022 | 221 |
| abstract_inverted_index.0.895±0.022 | 240 |
| abstract_inverted_index.0.897±0.021 | 245 |
| abstract_inverted_index.0.899±0.022 | 238 |
| abstract_inverted_index.0.901±0.020 | 242 |
| abstract_inverted_index.0.909±0.021 | 236 |
| abstract_inverted_index.Conventional | 166 |
| abstract_inverted_index.artificially | 137 |
| abstract_inverted_index.augmentation | 120, 249, 278 |
| abstract_inverted_index.conventional | 262, 290, 317 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.discriminant | 175, 182 |
| abstract_inverted_index.outperformed | 316 |
| abstract_inverted_index.performance. | 165 |
| abstract_inverted_index.precancerous | 63 |
| abstract_inverted_index.respectively | 247 |
| abstract_inverted_index.specificity. | 20 |
| abstract_inverted_index.spectroscopy | 8 |
| abstract_inverted_index.Convolutional | 312 |
| abstract_inverted_index.convolutional | 85 |
| abstract_inverted_index.spectroscopy. | 44, 327 |
| abstract_inverted_index.characteristic | 153 |
| abstract_inverted_index.One-dimensional | 84 |
| abstract_inverted_index.classification. | 94 |
| abstract_inverted_index.one-dimensional | 142 |
| abstract_inverted_index.(p&lt;0.001, | 273 |
| abstract_inverted_index.(p&lt;0.0001, | 254 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5034358596 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I141074466, https://openalex.org/I141945490, https://openalex.org/I4210150180 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.98822645 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |