Improving Speaker-independent Speech Emotion Recognition Using Dynamic Joint Distribution Adaptation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.09752
In speaker-independent speech emotion recognition, the training and testing samples are collected from diverse speakers, leading to a multi-domain shift challenge across the feature distributions of data from different speakers. Consequently, when the trained model is confronted with data from new speakers, its performance tends to degrade. To address the issue, we propose a Dynamic Joint Distribution Adaptation (DJDA) method under the framework of multi-source domain adaptation. DJDA firstly utilizes joint distribution adaptation (JDA), involving marginal distribution adaptation (MDA) and conditional distribution adaptation (CDA), to more precisely measure the multi-domain distribution shifts caused by different speakers. This helps eliminate speaker bias in emotion features, allowing for learning discriminative and speaker-invariant speech emotion features from coarse-level to fine-level. Furthermore, we quantify the adaptation contributions of MDA and CDA within JDA by using a dynamic balance factor based on $\mathcal{A}$-Distance, promoting to effectively handle the unknown distributions encountered in data from new speakers. Experimental results demonstrate the superior performance of our DJDA as compared to other state-of-the-art (SOTA) methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.09752
- https://arxiv.org/pdf/2401.09752
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391046143
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391046143Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.09752Digital Object Identifier
- Title
-
Improving Speaker-independent Speech Emotion Recognition Using Dynamic Joint Distribution AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-18Full publication date if available
- Authors
-
Cheng Lu, Yuan Zong, Hailun Lian, Yan Zhao, Björn W. Schuller, Wenming ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.09752Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.09752Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.09752Direct OA link when available
- Concepts
-
Discriminative model, Joint probability distribution, Speech recognition, Computer science, Adaptation (eye), Joint (building), Feature (linguistics), Conditional probability distribution, Marginal distribution, Speaker recognition, Pattern recognition (psychology), Artificial intelligence, Psychology, Mathematics, Linguistics, Engineering, Statistics, Architectural engineering, Neuroscience, Philosophy, Random variableTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391046143 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.09752 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.09752 |
| ids.openalex | https://openalex.org/W4391046143 |
| fwci | |
| type | preprint |
| title | Improving Speaker-independent Speech Emotion Recognition Using Dynamic Joint Distribution Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9803000092506409 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T10667 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9779000282287598 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Emotion and Mood Recognition |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9607999920845032 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7686691284179688 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C18653775 |
| concepts[1].level | 2 |
| concepts[1].score | 0.704663872718811 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[1].display_name | Joint probability distribution |
| concepts[2].id | https://openalex.org/C28490314 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6907886862754822 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[2].display_name | Speech recognition |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6567337512969971 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C139807058 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5967634320259094 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[4].display_name | Adaptation (eye) |
| concepts[5].id | https://openalex.org/C18555067 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5710210800170898 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[5].display_name | Joint (building) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5410839319229126 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C43555835 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5046120882034302 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2300258 |
| concepts[7].display_name | Conditional probability distribution |
| concepts[8].id | https://openalex.org/C165216359 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46613356471061707 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q670653 |
| concepts[8].display_name | Marginal distribution |
| concepts[9].id | https://openalex.org/C133892786 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4584576189517975 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1145189 |
| concepts[9].display_name | Speaker recognition |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4148328900337219 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4121687412261963 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.17009174823760986 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1548326015472412 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12466952204704285 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08979663252830505 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08185616135597229 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C170154142 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[17].display_name | Architectural engineering |
| concepts[18].id | https://openalex.org/C169760540 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[18].display_name | Neuroscience |
| concepts[19].id | https://openalex.org/C138885662 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[19].display_name | Philosophy |
| concepts[20].id | https://openalex.org/C122123141 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[20].display_name | Random variable |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.7686691284179688 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/joint-probability-distribution |
| keywords[1].score | 0.704663872718811 |
| keywords[1].display_name | Joint probability distribution |
| keywords[2].id | https://openalex.org/keywords/speech-recognition |
| keywords[2].score | 0.6907886862754822 |
| keywords[2].display_name | Speech recognition |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6567337512969971 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/adaptation |
| keywords[4].score | 0.5967634320259094 |
| keywords[4].display_name | Adaptation (eye) |
| keywords[5].id | https://openalex.org/keywords/joint |
| keywords[5].score | 0.5710210800170898 |
| keywords[5].display_name | Joint (building) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5410839319229126 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/conditional-probability-distribution |
| keywords[7].score | 0.5046120882034302 |
| keywords[7].display_name | Conditional probability distribution |
| keywords[8].id | https://openalex.org/keywords/marginal-distribution |
| keywords[8].score | 0.46613356471061707 |
| keywords[8].display_name | Marginal distribution |
| keywords[9].id | https://openalex.org/keywords/speaker-recognition |
| keywords[9].score | 0.4584576189517975 |
| keywords[9].display_name | Speaker recognition |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.4148328900337219 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.4121687412261963 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.17009174823760986 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1548326015472412 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.12466952204704285 |
| keywords[14].display_name | Linguistics |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.08979663252830505 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.08185616135597229 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.09752 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.09752 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.09752 |
| locations[1].id | doi:10.48550/arxiv.2401.09752 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.09752 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5054796879 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1477-1020 |
| authorships[0].author.display_name | Cheng Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027316177 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0839-8792 |
| authorships[1].author.display_name | Yuan Zong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zong, Yuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091060125 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1355-9503 |
| authorships[2].author.display_name | Hailun Lian |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lian, Hailun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5050699488 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1234-4455 |
| authorships[3].author.display_name | Yan Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao, Yan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043060302 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6478-8699 |
| authorships[4].author.display_name | Björn W. Schuller |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Schuller, Björn |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5029771864 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[5].author.display_name | Wenming Zheng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zheng, Wenming |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.09752 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Speaker-independent Speech Emotion Recognition Using Dynamic Joint Distribution Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9803000092506409 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W2497288182, https://openalex.org/W162901985, https://openalex.org/W4243126796, https://openalex.org/W12046094, https://openalex.org/W4249162344, https://openalex.org/W2952129880, https://openalex.org/W4294642871, https://openalex.org/W4234449911, https://openalex.org/W4237297272, https://openalex.org/W259963716 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.09752 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.09752 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.09752 |
| primary_location.id | pmh:oai:arXiv.org:2401.09752 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.09752 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.09752 |
| publication_date | 2024-01-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 53, 131 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.as | 160 |
| abstract_inverted_index.by | 93, 129 |
| abstract_inverted_index.in | 101, 146 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.of | 25, 63, 123, 157 |
| abstract_inverted_index.on | 136 |
| abstract_inverted_index.to | 16, 45, 84, 115, 139, 162 |
| abstract_inverted_index.we | 51, 118 |
| abstract_inverted_index.CDA | 126 |
| abstract_inverted_index.JDA | 128 |
| abstract_inverted_index.MDA | 124 |
| abstract_inverted_index.and | 7, 79, 108, 125 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.for | 105 |
| abstract_inverted_index.its | 42 |
| abstract_inverted_index.new | 40, 149 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 5, 22, 32, 49, 61, 88, 120, 142, 154 |
| abstract_inverted_index.DJDA | 67, 159 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.bias | 100 |
| abstract_inverted_index.data | 26, 38, 147 |
| abstract_inverted_index.from | 12, 27, 39, 113, 148 |
| abstract_inverted_index.more | 85 |
| abstract_inverted_index.when | 31 |
| abstract_inverted_index.with | 37 |
| abstract_inverted_index.(MDA) | 78 |
| abstract_inverted_index.Joint | 55 |
| abstract_inverted_index.based | 135 |
| abstract_inverted_index.helps | 97 |
| abstract_inverted_index.joint | 70 |
| abstract_inverted_index.model | 34 |
| abstract_inverted_index.other | 163 |
| abstract_inverted_index.shift | 19 |
| abstract_inverted_index.tends | 44 |
| abstract_inverted_index.under | 60 |
| abstract_inverted_index.using | 130 |
| abstract_inverted_index.(CDA), | 83 |
| abstract_inverted_index.(DJDA) | 58 |
| abstract_inverted_index.(JDA), | 73 |
| abstract_inverted_index.(SOTA) | 165 |
| abstract_inverted_index.across | 21 |
| abstract_inverted_index.caused | 92 |
| abstract_inverted_index.domain | 65 |
| abstract_inverted_index.factor | 134 |
| abstract_inverted_index.handle | 141 |
| abstract_inverted_index.issue, | 50 |
| abstract_inverted_index.method | 59 |
| abstract_inverted_index.shifts | 91 |
| abstract_inverted_index.speech | 2, 110 |
| abstract_inverted_index.within | 127 |
| abstract_inverted_index.Dynamic | 54 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.balance | 133 |
| abstract_inverted_index.diverse | 13 |
| abstract_inverted_index.dynamic | 132 |
| abstract_inverted_index.emotion | 3, 102, 111 |
| abstract_inverted_index.feature | 23 |
| abstract_inverted_index.firstly | 68 |
| abstract_inverted_index.leading | 15 |
| abstract_inverted_index.measure | 87 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.results | 152 |
| abstract_inverted_index.samples | 9 |
| abstract_inverted_index.speaker | 99 |
| abstract_inverted_index.testing | 8 |
| abstract_inverted_index.trained | 33 |
| abstract_inverted_index.unknown | 143 |
| abstract_inverted_index.allowing | 104 |
| abstract_inverted_index.compared | 161 |
| abstract_inverted_index.degrade. | 46 |
| abstract_inverted_index.features | 112 |
| abstract_inverted_index.learning | 106 |
| abstract_inverted_index.marginal | 75 |
| abstract_inverted_index.methods. | 166 |
| abstract_inverted_index.quantify | 119 |
| abstract_inverted_index.superior | 155 |
| abstract_inverted_index.training | 6 |
| abstract_inverted_index.utilizes | 69 |
| abstract_inverted_index.challenge | 20 |
| abstract_inverted_index.collected | 11 |
| abstract_inverted_index.different | 28, 94 |
| abstract_inverted_index.eliminate | 98 |
| abstract_inverted_index.features, | 103 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.involving | 74 |
| abstract_inverted_index.precisely | 86 |
| abstract_inverted_index.promoting | 138 |
| abstract_inverted_index.speakers, | 14, 41 |
| abstract_inverted_index.speakers. | 29, 95, 150 |
| abstract_inverted_index.Adaptation | 57 |
| abstract_inverted_index.adaptation | 72, 77, 82, 121 |
| abstract_inverted_index.confronted | 36 |
| abstract_inverted_index.adaptation. | 66 |
| abstract_inverted_index.conditional | 80 |
| abstract_inverted_index.demonstrate | 153 |
| abstract_inverted_index.effectively | 140 |
| abstract_inverted_index.encountered | 145 |
| abstract_inverted_index.fine-level. | 116 |
| abstract_inverted_index.performance | 43, 156 |
| abstract_inverted_index.Distribution | 56 |
| abstract_inverted_index.Experimental | 151 |
| abstract_inverted_index.Furthermore, | 117 |
| abstract_inverted_index.coarse-level | 114 |
| abstract_inverted_index.distribution | 71, 76, 81, 90 |
| abstract_inverted_index.multi-domain | 18, 89 |
| abstract_inverted_index.multi-source | 64 |
| abstract_inverted_index.recognition, | 4 |
| abstract_inverted_index.Consequently, | 30 |
| abstract_inverted_index.contributions | 122 |
| abstract_inverted_index.distributions | 24, 144 |
| abstract_inverted_index.discriminative | 107 |
| abstract_inverted_index.state-of-the-art | 164 |
| abstract_inverted_index.speaker-invariant | 109 |
| abstract_inverted_index.speaker-independent | 1 |
| abstract_inverted_index.$\mathcal{A}$-Distance, | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |