Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.11189
Lossy image compression aims to represent images in as few bits as possible while maintaining fidelity to the original. Theoretical results indicate that optimizing distortion metrics such as PSNR or MS-SSIM necessarily leads to a discrepancy in the statistics of original images from those of reconstructions, in particular at low bitrates, often manifested by the blurring of the compressed images. Previous work has leveraged adversarial discriminators to improve statistical fidelity. Yet these binary discriminators adopted from generative modeling tasks may not be ideal for image compression. In this paper, we introduce a non-binary discriminator that is conditioned on quantized local image representations obtained via VQ-VAE autoencoders. Our evaluations on the CLIC2020, DIV2K and Kodak datasets show that our discriminator is more effective for jointly optimizing distortion (e.g., PSNR) and statistical fidelity (e.g., FID) than the PatchGAN of the state-of-the-art HiFiC model. On CLIC2020, we obtain the same FID as HiFiC with 30-40\% fewer bits.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.11189
- https://arxiv.org/pdf/2301.11189
- OA Status
- green
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318350438
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318350438Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.11189Digital Object Identifier
- Title
-
Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-26Full publication date if available
- Authors
-
Matthew J. Muckley, Alaaeldin El-Nouby, Karen Ullrich, Hervé Jeǵou, Jakob VerbeekList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.11189Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.11189Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.11189Direct OA link when available
- Concepts
-
Discriminator, Fidelity, Lossy compression, Computer science, Artificial intelligence, Distortion (music), Binary number, Image (mathematics), Image compression, Pattern recognition (psychology), Statistical model, High fidelity, Data compression, Algorithm, Mathematics, Image processing, Amplifier, Bandwidth (computing), Computer network, Electrical engineering, Telecommunications, Detector, Engineering, ArithmeticTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318350438 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.11189 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.11189 |
| ids.openalex | https://openalex.org/W4318350438 |
| fwci | 1.27377838 |
| type | preprint |
| title | Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12357 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Media Forensic Detection |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779803651 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8183969259262085 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[0].display_name | Discriminator |
| concepts[1].id | https://openalex.org/C2776459999 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7238031625747681 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[1].display_name | Fidelity |
| concepts[2].id | https://openalex.org/C165021410 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7118315100669861 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55564 |
| concepts[2].display_name | Lossy compression |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.654140830039978 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6155346035957336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C126780896 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5912734270095825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[5].display_name | Distortion (music) |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5722851157188416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5641062259674072 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C13481523 |
| concepts[8].level | 4 |
| concepts[8].score | 0.5103873610496521 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[8].display_name | Image compression |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49947500228881836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C114289077 |
| concepts[10].level | 2 |
| concepts[10].score | 0.453779011964798 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3284399 |
| concepts[10].display_name | Statistical model |
| concepts[11].id | https://openalex.org/C113364801 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4441251754760742 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q26674 |
| concepts[11].display_name | High fidelity |
| concepts[12].id | https://openalex.org/C78548338 |
| concepts[12].level | 2 |
| concepts[12].score | 0.43250176310539246 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[12].display_name | Data compression |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3458695411682129 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2805570960044861 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C9417928 |
| concepts[15].level | 3 |
| concepts[15].score | 0.22632291913032532 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[15].display_name | Image processing |
| concepts[16].id | https://openalex.org/C194257627 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[16].display_name | Amplifier |
| concepts[17].id | https://openalex.org/C2776257435 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[17].display_name | Bandwidth (computing) |
| concepts[18].id | https://openalex.org/C31258907 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[18].display_name | Computer network |
| concepts[19].id | https://openalex.org/C119599485 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[19].display_name | Electrical engineering |
| concepts[20].id | https://openalex.org/C76155785 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[20].display_name | Telecommunications |
| concepts[21].id | https://openalex.org/C94915269 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[21].display_name | Detector |
| concepts[22].id | https://openalex.org/C127413603 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[22].display_name | Engineering |
| concepts[23].id | https://openalex.org/C94375191 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[23].display_name | Arithmetic |
| keywords[0].id | https://openalex.org/keywords/discriminator |
| keywords[0].score | 0.8183969259262085 |
| keywords[0].display_name | Discriminator |
| keywords[1].id | https://openalex.org/keywords/fidelity |
| keywords[1].score | 0.7238031625747681 |
| keywords[1].display_name | Fidelity |
| keywords[2].id | https://openalex.org/keywords/lossy-compression |
| keywords[2].score | 0.7118315100669861 |
| keywords[2].display_name | Lossy compression |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.654140830039978 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6155346035957336 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/distortion |
| keywords[5].score | 0.5912734270095825 |
| keywords[5].display_name | Distortion (music) |
| keywords[6].id | https://openalex.org/keywords/binary-number |
| keywords[6].score | 0.5722851157188416 |
| keywords[6].display_name | Binary number |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.5641062259674072 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/image-compression |
| keywords[8].score | 0.5103873610496521 |
| keywords[8].display_name | Image compression |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.49947500228881836 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/statistical-model |
| keywords[10].score | 0.453779011964798 |
| keywords[10].display_name | Statistical model |
| keywords[11].id | https://openalex.org/keywords/high-fidelity |
| keywords[11].score | 0.4441251754760742 |
| keywords[11].display_name | High fidelity |
| keywords[12].id | https://openalex.org/keywords/data-compression |
| keywords[12].score | 0.43250176310539246 |
| keywords[12].display_name | Data compression |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.3458695411682129 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.2805570960044861 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/image-processing |
| keywords[15].score | 0.22632291913032532 |
| keywords[15].display_name | Image processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.11189 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.11189 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.11189 |
| locations[1].id | doi:10.48550/arxiv.2301.11189 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.11189 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029739727 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6525-8817 |
| authorships[0].author.display_name | Matthew J. Muckley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muckley, Matthew J. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083505661 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Alaaeldin El-Nouby |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | El-Nouby, Alaaeldin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058031547 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Karen Ullrich |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ullrich, Karen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111802678 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hervé Jeǵou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jégou, Hervé |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5040312210 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1419-1816 |
| authorships[4].author.display_name | Jakob Verbeek |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Verbeek, Jakob |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.11189 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12357 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Media Forensic Detection |
| related_works | https://openalex.org/W3210332869, https://openalex.org/W4210785996, https://openalex.org/W4327499886, https://openalex.org/W1680283075, https://openalex.org/W3162084246, https://openalex.org/W2181436147, https://openalex.org/W2056051076, https://openalex.org/W2015677580, https://openalex.org/W2115343698, https://openalex.org/W3202870363 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.11189 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.11189 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.11189 |
| primary_location.id | pmh:oai:arXiv.org:2301.11189 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.11189 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.11189 |
| publication_date | 2023-01-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 91 |
| abstract_inverted_index.In | 86 |
| abstract_inverted_index.On | 141 |
| abstract_inverted_index.as | 8, 11, 27, 148 |
| abstract_inverted_index.at | 48 |
| abstract_inverted_index.be | 81 |
| abstract_inverted_index.by | 53 |
| abstract_inverted_index.in | 7, 36, 46 |
| abstract_inverted_index.is | 95, 119 |
| abstract_inverted_index.of | 39, 44, 56, 136 |
| abstract_inverted_index.on | 97, 108 |
| abstract_inverted_index.or | 29 |
| abstract_inverted_index.to | 4, 16, 33, 66 |
| abstract_inverted_index.we | 89, 143 |
| abstract_inverted_index.FID | 147 |
| abstract_inverted_index.Our | 106 |
| abstract_inverted_index.Yet | 70 |
| abstract_inverted_index.and | 112, 128 |
| abstract_inverted_index.few | 9 |
| abstract_inverted_index.for | 83, 122 |
| abstract_inverted_index.has | 62 |
| abstract_inverted_index.low | 49 |
| abstract_inverted_index.may | 79 |
| abstract_inverted_index.not | 80 |
| abstract_inverted_index.our | 117 |
| abstract_inverted_index.the | 17, 37, 54, 57, 109, 134, 137, 145 |
| abstract_inverted_index.via | 103 |
| abstract_inverted_index.FID) | 132 |
| abstract_inverted_index.PSNR | 28 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.bits | 10 |
| abstract_inverted_index.from | 42, 75 |
| abstract_inverted_index.more | 120 |
| abstract_inverted_index.same | 146 |
| abstract_inverted_index.show | 115 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.than | 133 |
| abstract_inverted_index.that | 22, 94, 116 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.with | 150 |
| abstract_inverted_index.work | 61 |
| abstract_inverted_index.DIV2K | 111 |
| abstract_inverted_index.HiFiC | 139, 149 |
| abstract_inverted_index.Kodak | 113 |
| abstract_inverted_index.Lossy | 0 |
| abstract_inverted_index.PSNR) | 127 |
| abstract_inverted_index.bits. | 153 |
| abstract_inverted_index.fewer | 152 |
| abstract_inverted_index.ideal | 82 |
| abstract_inverted_index.image | 1, 84, 100 |
| abstract_inverted_index.leads | 32 |
| abstract_inverted_index.local | 99 |
| abstract_inverted_index.often | 51 |
| abstract_inverted_index.tasks | 78 |
| abstract_inverted_index.these | 71 |
| abstract_inverted_index.those | 43 |
| abstract_inverted_index.while | 13 |
| abstract_inverted_index.(e.g., | 126, 131 |
| abstract_inverted_index.VQ-VAE | 104 |
| abstract_inverted_index.binary | 72 |
| abstract_inverted_index.images | 6, 41 |
| abstract_inverted_index.model. | 140 |
| abstract_inverted_index.obtain | 144 |
| abstract_inverted_index.paper, | 88 |
| abstract_inverted_index.30-40\% | 151 |
| abstract_inverted_index.MS-SSIM | 30 |
| abstract_inverted_index.adopted | 74 |
| abstract_inverted_index.images. | 59 |
| abstract_inverted_index.improve | 67 |
| abstract_inverted_index.jointly | 123 |
| abstract_inverted_index.metrics | 25 |
| abstract_inverted_index.results | 20 |
| abstract_inverted_index.PatchGAN | 135 |
| abstract_inverted_index.Previous | 60 |
| abstract_inverted_index.blurring | 55 |
| abstract_inverted_index.datasets | 114 |
| abstract_inverted_index.fidelity | 15, 130 |
| abstract_inverted_index.indicate | 21 |
| abstract_inverted_index.modeling | 77 |
| abstract_inverted_index.obtained | 102 |
| abstract_inverted_index.original | 40 |
| abstract_inverted_index.possible | 12 |
| abstract_inverted_index.CLIC2020, | 110, 142 |
| abstract_inverted_index.bitrates, | 50 |
| abstract_inverted_index.effective | 121 |
| abstract_inverted_index.fidelity. | 69 |
| abstract_inverted_index.introduce | 90 |
| abstract_inverted_index.leveraged | 63 |
| abstract_inverted_index.original. | 18 |
| abstract_inverted_index.quantized | 98 |
| abstract_inverted_index.represent | 5 |
| abstract_inverted_index.compressed | 58 |
| abstract_inverted_index.distortion | 24, 125 |
| abstract_inverted_index.generative | 76 |
| abstract_inverted_index.manifested | 52 |
| abstract_inverted_index.non-binary | 92 |
| abstract_inverted_index.optimizing | 23, 124 |
| abstract_inverted_index.particular | 47 |
| abstract_inverted_index.statistics | 38 |
| abstract_inverted_index.Theoretical | 19 |
| abstract_inverted_index.adversarial | 64 |
| abstract_inverted_index.compression | 2 |
| abstract_inverted_index.conditioned | 96 |
| abstract_inverted_index.discrepancy | 35 |
| abstract_inverted_index.evaluations | 107 |
| abstract_inverted_index.maintaining | 14 |
| abstract_inverted_index.necessarily | 31 |
| abstract_inverted_index.statistical | 68, 129 |
| abstract_inverted_index.compression. | 85 |
| abstract_inverted_index.autoencoders. | 105 |
| abstract_inverted_index.discriminator | 93, 118 |
| abstract_inverted_index.discriminators | 65, 73 |
| abstract_inverted_index.representations | 101 |
| abstract_inverted_index.reconstructions, | 45 |
| abstract_inverted_index.state-of-the-art | 138 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.77449444 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |