Improving Sub-pixel Accuracy in Ultrasound Localization Microscopy Using Supervised and Self-supervised Deep Learning Article Swipe
Zeng Zhang
,
Misun Hwang
,
Todd J. Kilbaugh
,
Joseph Katz
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8256554
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8256554
These are the original PSFs used for generating the training, validation, and evaluation dataset for the paper "Improving Sub-pixel Accuracy in Ultrasound Localization Microscopy Using Supervised and Self-supervised Deep Learning".
Related Topics
Concepts
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://zenodo.org/record/8256554
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393797517
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393797517Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8256554Digital Object Identifier
- Title
-
Improving Sub-pixel Accuracy in Ultrasound Localization Microscopy Using Supervised and Self-supervised Deep LearningWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-17Full publication date if available
- Authors
-
Zeng Zhang, Misun Hwang, Todd J. Kilbaugh, Joseph KatzList of authors in order
- Landing page
-
https://zenodo.org/record/8256554Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/8256554Direct OA link when available
- Concepts
-
Pixel, Artificial intelligence, Microscopy, Ultrasound, Computer science, Supervised learning, Deep learning, Pattern recognition (psychology), Computer vision, Medicine, Optics, Artificial neural network, Radiology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393797517 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8256554 |
| ids.doi | https://doi.org/10.5281/zenodo.8256554 |
| ids.openalex | https://openalex.org/W4393797517 |
| fwci | |
| type | dataset |
| title | Improving Sub-pixel Accuracy in Ultrasound Localization Microscopy Using Supervised and Self-supervised Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9490000009536743 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10727 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9333000183105469 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Ultrasound Imaging and Elastography |
| topics[2].id | https://openalex.org/T12015 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9047999978065491 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Photoacoustic and Ultrasonic Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160633673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6722789406776428 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[0].display_name | Pixel |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6060060262680054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C147080431 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5990135669708252 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[2].display_name | Microscopy |
| concepts[3].id | https://openalex.org/C143753070 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5177689790725708 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[3].display_name | Ultrasound |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4826555848121643 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C136389625 |
| concepts[5].level | 3 |
| concepts[5].score | 0.47306549549102783 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[5].display_name | Supervised learning |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46490585803985596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3754664957523346 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3615994155406952 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16994237899780273 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16595935821533203 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.11710116267204285 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11517524719238281 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11315608024597168 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/pixel |
| keywords[0].score | 0.6722789406776428 |
| keywords[0].display_name | Pixel |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6060060262680054 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/microscopy |
| keywords[2].score | 0.5990135669708252 |
| keywords[2].display_name | Microscopy |
| keywords[3].id | https://openalex.org/keywords/ultrasound |
| keywords[3].score | 0.5177689790725708 |
| keywords[3].display_name | Ultrasound |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4826555848121643 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/supervised-learning |
| keywords[5].score | 0.47306549549102783 |
| keywords[5].display_name | Supervised learning |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.46490585803985596 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3754664957523346 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.3615994155406952 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.16994237899780273 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.16595935821533203 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.11710116267204285 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.11517524719238281 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.11315608024597168 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:8256554 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://zenodo.org/record/8256554 |
| locations[1].id | doi:10.5281/zenodo.8256554 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | dataset |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.8256554 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5100360182 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2322-8572 |
| authorships[0].author.display_name | Zeng Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Johns Hopkins University |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zeng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, Johns Hopkins University |
| authorships[1].author.id | https://openalex.org/A5026999160 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0125-2686 |
| authorships[1].author.display_name | Misun Hwang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1335321130 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology, Children's Hospital of Philadelphia |
| authorships[1].institutions[0].id | https://openalex.org/I1335321130 |
| authorships[1].institutions[0].ror | https://ror.org/01z7r7q48 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1335321130 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Children's Hospital of Philadelphia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Misun Hwang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology, Children's Hospital of Philadelphia |
| authorships[2].author.id | https://openalex.org/A5031954544 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4959-3092 |
| authorships[2].author.display_name | Todd J. Kilbaugh |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1335321130 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia |
| authorships[2].institutions[0].id | https://openalex.org/I1335321130 |
| authorships[2].institutions[0].ror | https://ror.org/01z7r7q48 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1335321130 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Children's Hospital of Philadelphia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Todd J. Kilbaugh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia |
| authorships[3].author.id | https://openalex.org/A5044925111 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9067-2473 |
| authorships[3].author.display_name | Joseph Katz |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Johns Hopkins University |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joseph Katz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mechanical Engineering, Johns Hopkins University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/8256554 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving Sub-pixel Accuracy in Ultrasound Localization Microscopy Using Supervised and Self-supervised Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9490000009536743 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2085033728, https://openalex.org/W4285411112, https://openalex.org/W2171299904, https://openalex.org/W1647606319, https://openalex.org/W4390494008, https://openalex.org/W2053596378, https://openalex.org/W2922442631, https://openalex.org/W2351153092, https://openalex.org/W2168523118 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:zenodo.org:8256554 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/8256554 |
| primary_location.id | pmh:oai:zenodo.org:8256554 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://zenodo.org/record/8256554 |
| publication_date | 2023-08-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.in | 20 |
| abstract_inverted_index.and | 11, 26 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.for | 6, 14 |
| abstract_inverted_index.the | 2, 8, 15 |
| abstract_inverted_index.Deep | 28 |
| abstract_inverted_index.PSFs | 4 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.These | 0 |
| abstract_inverted_index.Using | 24 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.dataset | 13 |
| abstract_inverted_index.Accuracy | 19 |
| abstract_inverted_index.original | 3 |
| abstract_inverted_index.Sub-pixel | 18 |
| abstract_inverted_index.training, | 9 |
| abstract_inverted_index."Improving | 17 |
| abstract_inverted_index.Learning". | 29 |
| abstract_inverted_index.Microscopy | 23 |
| abstract_inverted_index.Supervised | 25 |
| abstract_inverted_index.Ultrasound | 21 |
| abstract_inverted_index.evaluation | 12 |
| abstract_inverted_index.generating | 7 |
| abstract_inverted_index.validation, | 10 |
| abstract_inverted_index.Localization | 22 |
| abstract_inverted_index.Self-supervised | 27 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |