Improving the Accuracy of Soil Classification by Using Vis–NIR, MIR, and Their Spectra Fusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17091524
Soil spectroscopy offers a rapid, cost-effective alternative to traditional soil analyses for characterization and classification. Previous studies have mainly focused on predicting soil categories using single sensors, particularly visible–near-infrared (vis–NIR) or mid-infrared (MIR) spectroscopy. In this study, we evaluated the performance of vis–NIR, MIR, and their combined spectra for soil classification by partial least-squares discriminant analysis (PLSDA) and random forest (RF). Utilizing 60 typical soil profiles’ data of four soil classes from the global soil spectral library (GSSL), our results demonstrated that in PLSDA models, direct combination (optimal overall accuracy: 70.6%, kappa coefficient: 0.60) and outer product analysis (OPA) fused spectra (optimal overall accuracy: 68.1%, kappa coefficient: 0.57) outperformed vis–NIR (optimal overall accuracy: 62.2%, kappa coefficient: 0.49) but underperformed compared to MIR (optimal overall accuracy: 71.4%, kappa coefficient: 0.62). In RF models, classification accuracy using fused spectra was inferior to single spectral ranges, with MIR achieving the highest classification accuracy (optimal overall accuracy: 89.1%, kappa coefficient: 0.85). Therefore, MIR alone remains the most effective spectral range for accurate soil class discrimination. Our findings highlight the potential of MIR spectroscopy for enhancing global soil classification accuracy and efficiency, with important implications for soil resource management and agricultural planning across diverse environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17091524
- https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572
- OA Status
- gold
- Cited By
- 1
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409813851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409813851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17091524Digital Object Identifier
- Title
-
Improving the Accuracy of Soil Classification by Using Vis–NIR, MIR, and Their Spectra FusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-25Full publication date if available
- Authors
-
Shuo Li, Xinru Shen, Shen Xue, Cheng Jun, Dongyun Xu, Randa S. Makar, Yan Guo, Bifeng Hu, Songchao Chen, Yongsheng Hong, Jie Peng, Zhou ShiList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17091524Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572Direct OA link when available
- Concepts
-
Fusion, Remote sensing, Pattern recognition (psychology), Environmental science, Materials science, Artificial intelligence, Computer science, Geology, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409813851 |
|---|---|
| doi | https://doi.org/10.3390/rs17091524 |
| ids.doi | https://doi.org/10.3390/rs17091524 |
| ids.openalex | https://openalex.org/W4409813851 |
| fwci | 2.04143621 |
| type | article |
| title | Improving the Accuracy of Soil Classification by Using Vis–NIR, MIR, and Their Spectra Fusion |
| awards[0].id | https://openalex.org/G5300221154 |
| awards[0].funder_id | https://openalex.org/F4320327287 |
| awards[0].display_name | |
| awards[0].funder_award_id | 202305 |
| awards[0].funder_display_name | Ministry of Agriculture and Rural Affairs of the People's Republic of China |
| awards[1].id | https://openalex.org/G4546416423 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42201058 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G6831345681 |
| awards[2].funder_id | https://openalex.org/F4320336308 |
| awards[2].display_name | |
| awards[2].funder_award_id | F2010121002-202414 |
| awards[2].funder_display_name | State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau |
| awards[3].id | https://openalex.org/G1403885049 |
| awards[3].funder_id | https://openalex.org/F4320322665 |
| awards[3].display_name | |
| awards[3].funder_award_id | 20232BAB213058 |
| awards[3].funder_display_name | Natural Science Foundation of Jiangxi Province |
| biblio.issue | 9 |
| biblio.volume | 17 |
| biblio.last_page | 1524 |
| biblio.first_page | 1524 |
| topics[0].id | https://openalex.org/T10770 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Geostatistics and Mapping |
| topics[1].id | https://openalex.org/T12157 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Geochemistry and Geologic Mapping |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322665 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Jiangxi Province |
| funders[2].id | https://openalex.org/F4320327287 |
| funders[2].ror | |
| funders[2].display_name | Ministry of Agriculture and Rural Affairs of the People's Republic of China |
| funders[3].id | https://openalex.org/F4320336308 |
| funders[3].ror | |
| funders[3].display_name | State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C158525013 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5325233936309814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[0].display_name | Fusion |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.39319297671318054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.3899412155151367 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33306413888931274 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.32112330198287964 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3189235329627991 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2500339150428772 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.172023743391037 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/fusion |
| keywords[0].score | 0.5325233936309814 |
| keywords[0].display_name | Fusion |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.39319297671318054 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.3899412155151367 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.33306413888931274 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.32112330198287964 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3189235329627991 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.2500339150428772 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.172023743391037 |
| keywords[7].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs17091524 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17091524 |
| locations[1].id | pmh:oai:doaj.org/article:b241cee426054c2cbfcb0c7b883e3705 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 9, p 1524 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/b241cee426054c2cbfcb0c7b883e3705 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5046070483 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8675-4070 |
| authorships[0].author.display_name | Shuo Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210151987 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I40963666 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China |
| authorships[0].institutions[0].id | https://openalex.org/I40963666 |
| authorships[0].institutions[0].ror | https://ror.org/03x1jna21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40963666 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Central China Normal University |
| authorships[0].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[0].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuo Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China, Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[1].author.id | https://openalex.org/A5035212373 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xinru Shen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40963666 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210151987 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[1].institutions[0].id | https://openalex.org/I40963666 |
| authorships[1].institutions[0].ror | https://ror.org/03x1jna21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40963666 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Central China Normal University |
| authorships[1].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[1].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinru Shen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China, Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[2].author.id | https://openalex.org/A5102269093 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8190-5965 |
| authorships[2].author.display_name | Shen Xue |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40963666 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I89652312 |
| authorships[2].affiliations[1].raw_affiliation_string | State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China |
| authorships[2].institutions[0].id | https://openalex.org/I40963666 |
| authorships[2].institutions[0].ror | https://ror.org/03x1jna21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40963666 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central China Normal University |
| authorships[2].institutions[1].id | https://openalex.org/I89652312 |
| authorships[2].institutions[1].ror | https://ror.org/0051rme32 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I89652312 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Northwest A&F University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xue Shen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban & Environmental Sciences, Central China Normal University, Wuhan 430079, China, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China |
| authorships[3].author.id | https://openalex.org/A5003989147 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-8308-4972 |
| authorships[3].author.display_name | Cheng Jun |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47449453 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Environmental and Sustainability Sciences, Kean University, Union, NJ 07083, USA |
| authorships[3].institutions[0].id | https://openalex.org/I47449453 |
| authorships[3].institutions[0].ror | https://ror.org/04wzzqn13 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47449453 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Kean University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jun Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Environmental and Sustainability Sciences, Kean University, Union, NJ 07083, USA |
| authorships[4].author.id | https://openalex.org/A5101850840 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dongyun Xu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74485261 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Resources and Environment, Shandong Agricultural University, Taian 271018, China |
| authorships[4].institutions[0].id | https://openalex.org/I74485261 |
| authorships[4].institutions[0].ror | https://ror.org/02ke8fw32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74485261 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shandong Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dongyun Xu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Resources and Environment, Shandong Agricultural University, Taian 271018, China |
| authorships[5].author.id | https://openalex.org/A5076644678 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1445-0075 |
| authorships[5].author.display_name | Randa S. Makar |
| authorships[5].countries | EG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210131959 |
| authorships[5].affiliations[0].raw_affiliation_string | Soils & Water Use Department, Agricultural & Biological Research Institute, National Research Centre, Cairo 12622, Egypt |
| authorships[5].institutions[0].id | https://openalex.org/I4210131959 |
| authorships[5].institutions[0].ror | https://ror.org/02n85j827 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210131959 |
| authorships[5].institutions[0].country_code | EG |
| authorships[5].institutions[0].display_name | National Research Centre |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Randa S. Makar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Soils & Water Use Department, Agricultural & Biological Research Institute, National Research Centre, Cairo 12622, Egypt |
| authorships[6].author.id | https://openalex.org/A5101943270 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8206-3210 |
| authorships[6].author.display_name | Yan Guo |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210151987 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210096196 |
| authorships[6].affiliations[1].raw_affiliation_string | Institute of Agricultural Information Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210096196 |
| authorships[6].institutions[0].ror | https://ror.org/00vdyrj80 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210096196 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Henan Academy of Agricultural Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210151987 |
| authorships[6].institutions[1].ror | https://ror.org/05ckt8b96 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yan Guo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute of Agricultural Information Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China, Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China |
| authorships[7].author.id | https://openalex.org/A5107464249 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9353-0307 |
| authorships[7].author.display_name | Bifeng Hu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I59649739 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Land Resource Management, School of Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China |
| authorships[7].institutions[0].id | https://openalex.org/I59649739 |
| authorships[7].institutions[0].ror | https://ror.org/03efmyj29 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I59649739 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Jiangxi University of Finance and Economics |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bifeng Hu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Land Resource Management, School of Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China |
| authorships[8].author.id | https://openalex.org/A5080056117 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1245-0482 |
| authorships[8].author.display_name | Songchao Chen |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
| authorships[8].affiliations[1].raw_affiliation_string | ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China |
| authorships[8].institutions[0].id | https://openalex.org/I76130692 |
| authorships[8].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Zhejiang University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Songchao Chen |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China |
| authorships[9].author.id | https://openalex.org/A5086938179 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Yongsheng Hong |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[9].affiliations[0].raw_affiliation_string | School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China |
| authorships[9].institutions[0].id | https://openalex.org/I37461747 |
| authorships[9].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Wuhan University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yongsheng Hong |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China |
| authorships[10].author.id | https://openalex.org/A5010740814 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6533-8737 |
| authorships[10].author.display_name | Jie Peng |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I3129293551 |
| authorships[10].affiliations[0].raw_affiliation_string | College of Agriculture, Tarim University, Alar 843300, China |
| authorships[10].institutions[0].id | https://openalex.org/I3129293551 |
| authorships[10].institutions[0].ror | https://ror.org/05202v862 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I3129293551 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Tarim University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jie Peng |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | College of Agriculture, Tarim University, Alar 843300, China |
| authorships[11].author.id | https://openalex.org/A5108053049 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3914-5402 |
| authorships[11].author.display_name | Zhou Shi |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[11].affiliations[0].raw_affiliation_string | Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
| authorships[11].institutions[0].id | https://openalex.org/I76130692 |
| authorships[11].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | Zhejiang University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Zhou Shi |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving the Accuracy of Soil Classification by Using Vis–NIR, MIR, and Their Spectra Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10770 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Geostatistics and Mapping |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2059707233, https://openalex.org/W1983126463, https://openalex.org/W2099421762, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17091524 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17091524 |
| primary_location.id | doi:10.3390/rs17091524 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/9/1524/pdf?version=1745574572 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17091524 |
| publication_date | 2025-04-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4400230187, https://openalex.org/W4200285021, https://openalex.org/W4388582110, https://openalex.org/W3018417665, https://openalex.org/W3135259200, https://openalex.org/W4376491392, https://openalex.org/W2192080354, https://openalex.org/W2884342889, https://openalex.org/W1991072106, https://openalex.org/W2796360809, https://openalex.org/W3165467182, https://openalex.org/W4382403047, https://openalex.org/W2323082653, https://openalex.org/W2969259866, https://openalex.org/W6631593031, https://openalex.org/W3126971234, https://openalex.org/W1523078206, https://openalex.org/W3120640524, https://openalex.org/W2951230751, https://openalex.org/W225220184, https://openalex.org/W2620093133, https://openalex.org/W2158449659, https://openalex.org/W2047391219, https://openalex.org/W2885633929, https://openalex.org/W2040719788, https://openalex.org/W4392180188, https://openalex.org/W4382602589, https://openalex.org/W4389946468, https://openalex.org/W2912648180, https://openalex.org/W2968204211, https://openalex.org/W3025754366, https://openalex.org/W2955980286, https://openalex.org/W3117367313, https://openalex.org/W2292439029, https://openalex.org/W2124584066, https://openalex.org/W2109606373, https://openalex.org/W2164583936, https://openalex.org/W2045256553, https://openalex.org/W2807326971, https://openalex.org/W2911964244, https://openalex.org/W6610017368, https://openalex.org/W2324026571, https://openalex.org/W1973273412, https://openalex.org/W2052903566, https://openalex.org/W3003889422, https://openalex.org/W2001804870, https://openalex.org/W2103766443, https://openalex.org/W3163989235, https://openalex.org/W1190219959, https://openalex.org/W3042499215, https://openalex.org/W1592341820, https://openalex.org/W2071188448, https://openalex.org/W2115823300, https://openalex.org/W3207549988, https://openalex.org/W4200173496, https://openalex.org/W4281817111, https://openalex.org/W2888610957, https://openalex.org/W4200169374, https://openalex.org/W4386412796, https://openalex.org/W2784062288, https://openalex.org/W2769689104, https://openalex.org/W2051007474, https://openalex.org/W4402629212, https://openalex.org/W4409467586, https://openalex.org/W1527133129, https://openalex.org/W273955616 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.60 | 62 |
| abstract_inverted_index.In | 34, 129 |
| abstract_inverted_index.RF | 130 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 82 |
| abstract_inverted_index.of | 41, 67, 176 |
| abstract_inverted_index.on | 20 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 7, 120, 139 |
| abstract_inverted_index.we | 37 |
| abstract_inverted_index.MIR | 121, 144, 158, 177 |
| abstract_inverted_index.Our | 171 |
| abstract_inverted_index.and | 13, 44, 57, 94, 185, 194 |
| abstract_inverted_index.but | 117 |
| abstract_inverted_index.for | 11, 48, 166, 179, 190 |
| abstract_inverted_index.our | 78 |
| abstract_inverted_index.the | 39, 72, 146, 161, 174 |
| abstract_inverted_index.was | 137 |
| abstract_inverted_index.MIR, | 43 |
| abstract_inverted_index.Soil | 0 |
| abstract_inverted_index.data | 66 |
| abstract_inverted_index.four | 68 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.have | 17 |
| abstract_inverted_index.most | 162 |
| abstract_inverted_index.soil | 9, 22, 49, 64, 69, 74, 168, 182, 191 |
| abstract_inverted_index.that | 81 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.with | 143, 187 |
| abstract_inverted_index.(MIR) | 32 |
| abstract_inverted_index.(OPA) | 98 |
| abstract_inverted_index.(RF). | 60 |
| abstract_inverted_index.0.49) | 116 |
| abstract_inverted_index.0.57) | 107 |
| abstract_inverted_index.0.60) | 93 |
| abstract_inverted_index.PLSDA | 83 |
| abstract_inverted_index.alone | 159 |
| abstract_inverted_index.class | 169 |
| abstract_inverted_index.fused | 99, 135 |
| abstract_inverted_index.kappa | 91, 105, 114, 126, 154 |
| abstract_inverted_index.outer | 95 |
| abstract_inverted_index.range | 165 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.using | 24, 134 |
| abstract_inverted_index.0.62). | 128 |
| abstract_inverted_index.0.85). | 156 |
| abstract_inverted_index.62.2%, | 113 |
| abstract_inverted_index.68.1%, | 104 |
| abstract_inverted_index.70.6%, | 90 |
| abstract_inverted_index.71.4%, | 125 |
| abstract_inverted_index.89.1%, | 153 |
| abstract_inverted_index.across | 197 |
| abstract_inverted_index.direct | 85 |
| abstract_inverted_index.forest | 59 |
| abstract_inverted_index.global | 73, 181 |
| abstract_inverted_index.mainly | 18 |
| abstract_inverted_index.offers | 2 |
| abstract_inverted_index.random | 58 |
| abstract_inverted_index.rapid, | 4 |
| abstract_inverted_index.single | 25, 140 |
| abstract_inverted_index.study, | 36 |
| abstract_inverted_index.(GSSL), | 77 |
| abstract_inverted_index.(PLSDA) | 56 |
| abstract_inverted_index.classes | 70 |
| abstract_inverted_index.diverse | 198 |
| abstract_inverted_index.focused | 19 |
| abstract_inverted_index.highest | 147 |
| abstract_inverted_index.library | 76 |
| abstract_inverted_index.models, | 84, 131 |
| abstract_inverted_index.overall | 88, 102, 111, 123, 151 |
| abstract_inverted_index.partial | 52 |
| abstract_inverted_index.product | 96 |
| abstract_inverted_index.ranges, | 142 |
| abstract_inverted_index.remains | 160 |
| abstract_inverted_index.results | 79 |
| abstract_inverted_index.spectra | 47, 100, 136 |
| abstract_inverted_index.studies | 16 |
| abstract_inverted_index.typical | 63 |
| abstract_inverted_index.(optimal | 87, 101, 110, 122, 150 |
| abstract_inverted_index.Previous | 15 |
| abstract_inverted_index.accuracy | 133, 149, 184 |
| abstract_inverted_index.accurate | 167 |
| abstract_inverted_index.analyses | 10 |
| abstract_inverted_index.analysis | 55, 97 |
| abstract_inverted_index.combined | 46 |
| abstract_inverted_index.compared | 119 |
| abstract_inverted_index.findings | 172 |
| abstract_inverted_index.inferior | 138 |
| abstract_inverted_index.planning | 196 |
| abstract_inverted_index.resource | 192 |
| abstract_inverted_index.sensors, | 26 |
| abstract_inverted_index.spectral | 75, 141, 164 |
| abstract_inverted_index.Utilizing | 61 |
| abstract_inverted_index.accuracy: | 89, 103, 112, 124, 152 |
| abstract_inverted_index.achieving | 145 |
| abstract_inverted_index.effective | 163 |
| abstract_inverted_index.enhancing | 180 |
| abstract_inverted_index.evaluated | 38 |
| abstract_inverted_index.highlight | 173 |
| abstract_inverted_index.important | 188 |
| abstract_inverted_index.potential | 175 |
| abstract_inverted_index.vis–NIR | 109 |
| abstract_inverted_index.Therefore, | 157 |
| abstract_inverted_index.categories | 23 |
| abstract_inverted_index.management | 193 |
| abstract_inverted_index.predicting | 21 |
| abstract_inverted_index.vis–NIR, | 42 |
| abstract_inverted_index.(vis–NIR) | 29 |
| abstract_inverted_index.alternative | 6 |
| abstract_inverted_index.combination | 86 |
| abstract_inverted_index.efficiency, | 186 |
| abstract_inverted_index.performance | 40 |
| abstract_inverted_index.profiles’ | 65 |
| abstract_inverted_index.traditional | 8 |
| abstract_inverted_index.agricultural | 195 |
| abstract_inverted_index.coefficient: | 92, 106, 115, 127, 155 |
| abstract_inverted_index.demonstrated | 80 |
| abstract_inverted_index.discriminant | 54 |
| abstract_inverted_index.implications | 189 |
| abstract_inverted_index.mid-infrared | 31 |
| abstract_inverted_index.outperformed | 108 |
| abstract_inverted_index.particularly | 27 |
| abstract_inverted_index.spectroscopy | 1, 178 |
| abstract_inverted_index.environments. | 199 |
| abstract_inverted_index.least-squares | 53 |
| abstract_inverted_index.spectroscopy. | 33 |
| abstract_inverted_index.classification | 50, 132, 148, 183 |
| abstract_inverted_index.cost-effective | 5 |
| abstract_inverted_index.underperformed | 118 |
| abstract_inverted_index.classification. | 14 |
| abstract_inverted_index.discrimination. | 170 |
| abstract_inverted_index.characterization | 12 |
| abstract_inverted_index.visible–near-infrared | 28 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile.value | 0.77195091 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |