Improving the Direct Determination of $|V_{ts}|$ using Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.02918
An $s$-jet tagging approach to determine the Cabibbo-Kobayashi-Maskawa matrix component $|V_{ts}|$ directly in the dileptonic final state events of the top pair production in proton-proton collisions has been previously studied by measuring the branching fraction of the decay of one of the top quarks by $t \to sW$. The main challenge is improving the discrimination performance between strange jets from top decays and other jets. This study proposes novel jet discriminators, called DISAJA, using a Transformer-based deep learning method. The first model, DISAJA-H, utilizes multi-domain inputs (jets, leptons, and missing transverse momentum). An additional model, DISAJA-L, further improves the setup by using lower-level jet constituent information, rather than the high-level clustered information. DISAJA-L is a novel model that combines low-level jet constituent analysis with event classification using multi-domain inputs. The model performance is evaluated via a CMS-like LHC Run 2 fast simulation by comparing various statistical test results to those from a Transformer-based jet classifier which considers only the individual jets. This study shows that the DISAJA models have significant performance gains over the individual jet classifier, and we show the potential of the measurement during Run 3 of the LHC and the HL-LHC.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.02918
- https://arxiv.org/pdf/2502.02918
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407212782
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407212782Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.02918Digital Object Identifier
- Title
-
Improving the Direct Determination of $|V_{ts}|$ using Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-05Full publication date if available
- Authors
-
Jeewon Heo, W. Jang, J. S. H. Lee, Youn Jung Roh, I. J. Watson, S. YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.02918Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.02918Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.02918Direct OA link when available
- Concepts
-
Artificial intelligence, Deep learning, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407212782 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.02918 |
| ids.doi | https://doi.org/10.5281/zenodo.14862734 |
| ids.openalex | https://openalex.org/W4407212782 |
| fwci | |
| type | preprint |
| title | Improving the Direct Determination of $|V_{ts}|$ using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.4318663477897644 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.41272130608558655 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3747469186782837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.4318663477897644 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.41272130608558655 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3747469186782837 |
| keywords[2].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.02918 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.02918 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.02918 |
| locations[1].id | doi:10.48550/arxiv.2502.02918 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.02918 |
| locations[2].id | doi:10.5281/zenodo.14862733 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.5281/zenodo.14862733 |
| locations[3].id | doi:10.5281/zenodo.14862734 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400562 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[3].source.host_organization | https://openalex.org/I67311998 |
| locations[3].source.host_organization_name | European Organization for Nuclear Research |
| locations[3].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.5281/zenodo.14862734 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091082819 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jeewon Heo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Heo, Jeewon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087209263 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1571-9072 |
| authorships[1].author.display_name | W. Jang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jang, Woojin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043109251 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2153-1519 |
| authorships[2].author.display_name | J. S. H. Lee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lee, Jason Sang Hun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5104089711 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Youn Jung Roh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Roh, Youn Jung |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5106485564 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2141-3413 |
| authorships[4].author.display_name | I. J. Watson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Watson, Ian James |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5055093558 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6905-6553 |
| authorships[5].author.display_name | S. Yang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yang, Seungjin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.02918 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-07T00:00:00 |
| display_name | Improving the Direct Determination of $|V_{ts}|$ using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W3086377361 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.02918 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.02918 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.02918 |
| primary_location.id | pmh:oai:arXiv.org:2502.02918 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.02918 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.02918 |
| publication_date | 2025-02-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 139 |
| abstract_inverted_index.3 | 187 |
| abstract_inverted_index.a | 74, 114, 135, 151 |
| abstract_inverted_index.$t | 45 |
| abstract_inverted_index.An | 0, 92 |
| abstract_inverted_index.by | 30, 44, 100, 142 |
| abstract_inverted_index.in | 12, 23 |
| abstract_inverted_index.is | 51, 113, 132 |
| abstract_inverted_index.of | 18, 35, 38, 40, 182, 188 |
| abstract_inverted_index.to | 4, 148 |
| abstract_inverted_index.we | 178 |
| abstract_inverted_index.LHC | 137, 190 |
| abstract_inverted_index.Run | 138, 186 |
| abstract_inverted_index.The | 48, 79, 129 |
| abstract_inverted_index.\to | 46 |
| abstract_inverted_index.and | 62, 88, 177, 191 |
| abstract_inverted_index.has | 26 |
| abstract_inverted_index.jet | 69, 103, 120, 153, 175 |
| abstract_inverted_index.one | 39 |
| abstract_inverted_index.the | 6, 13, 19, 32, 36, 41, 53, 98, 108, 158, 165, 173, 180, 183, 189, 192 |
| abstract_inverted_index.top | 20, 42, 60 |
| abstract_inverted_index.via | 134 |
| abstract_inverted_index.This | 65, 161 |
| abstract_inverted_index.been | 27 |
| abstract_inverted_index.deep | 76 |
| abstract_inverted_index.fast | 140 |
| abstract_inverted_index.from | 59, 150 |
| abstract_inverted_index.have | 168 |
| abstract_inverted_index.jets | 58 |
| abstract_inverted_index.main | 49 |
| abstract_inverted_index.only | 157 |
| abstract_inverted_index.over | 172 |
| abstract_inverted_index.pair | 21 |
| abstract_inverted_index.sW$. | 47 |
| abstract_inverted_index.show | 179 |
| abstract_inverted_index.test | 146 |
| abstract_inverted_index.than | 107 |
| abstract_inverted_index.that | 117, 164 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.decay | 37 |
| abstract_inverted_index.event | 124 |
| abstract_inverted_index.final | 15 |
| abstract_inverted_index.first | 80 |
| abstract_inverted_index.gains | 171 |
| abstract_inverted_index.jets. | 64, 160 |
| abstract_inverted_index.model | 116, 130 |
| abstract_inverted_index.novel | 68, 115 |
| abstract_inverted_index.other | 63 |
| abstract_inverted_index.setup | 99 |
| abstract_inverted_index.shows | 163 |
| abstract_inverted_index.state | 16 |
| abstract_inverted_index.study | 66, 162 |
| abstract_inverted_index.those | 149 |
| abstract_inverted_index.using | 73, 101, 126 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.(jets, | 86 |
| abstract_inverted_index.DISAJA | 166 |
| abstract_inverted_index.called | 71 |
| abstract_inverted_index.decays | 61 |
| abstract_inverted_index.during | 185 |
| abstract_inverted_index.events | 17 |
| abstract_inverted_index.inputs | 85 |
| abstract_inverted_index.matrix | 8 |
| abstract_inverted_index.model, | 81, 94 |
| abstract_inverted_index.models | 167 |
| abstract_inverted_index.quarks | 43 |
| abstract_inverted_index.rather | 106 |
| abstract_inverted_index.$s$-jet | 1 |
| abstract_inverted_index.DISAJA, | 72 |
| abstract_inverted_index.HL-LHC. | 193 |
| abstract_inverted_index.between | 56 |
| abstract_inverted_index.further | 96 |
| abstract_inverted_index.inputs. | 128 |
| abstract_inverted_index.method. | 78 |
| abstract_inverted_index.missing | 89 |
| abstract_inverted_index.results | 147 |
| abstract_inverted_index.strange | 57 |
| abstract_inverted_index.studied | 29 |
| abstract_inverted_index.tagging | 2 |
| abstract_inverted_index.various | 144 |
| abstract_inverted_index.CMS-like | 136 |
| abstract_inverted_index.DISAJA-L | 112 |
| abstract_inverted_index.analysis | 122 |
| abstract_inverted_index.approach | 3 |
| abstract_inverted_index.combines | 118 |
| abstract_inverted_index.directly | 11 |
| abstract_inverted_index.fraction | 34 |
| abstract_inverted_index.improves | 97 |
| abstract_inverted_index.learning | 77 |
| abstract_inverted_index.leptons, | 87 |
| abstract_inverted_index.proposes | 67 |
| abstract_inverted_index.utilizes | 83 |
| abstract_inverted_index.DISAJA-H, | 82 |
| abstract_inverted_index.DISAJA-L, | 95 |
| abstract_inverted_index.branching | 33 |
| abstract_inverted_index.challenge | 50 |
| abstract_inverted_index.clustered | 110 |
| abstract_inverted_index.comparing | 143 |
| abstract_inverted_index.component | 9 |
| abstract_inverted_index.considers | 156 |
| abstract_inverted_index.determine | 5 |
| abstract_inverted_index.evaluated | 133 |
| abstract_inverted_index.improving | 52 |
| abstract_inverted_index.low-level | 119 |
| abstract_inverted_index.measuring | 31 |
| abstract_inverted_index.potential | 181 |
| abstract_inverted_index.$|V_{ts}|$ | 10 |
| abstract_inverted_index.additional | 93 |
| abstract_inverted_index.classifier | 154 |
| abstract_inverted_index.collisions | 25 |
| abstract_inverted_index.dileptonic | 14 |
| abstract_inverted_index.high-level | 109 |
| abstract_inverted_index.individual | 159, 174 |
| abstract_inverted_index.momentum). | 91 |
| abstract_inverted_index.previously | 28 |
| abstract_inverted_index.production | 22 |
| abstract_inverted_index.simulation | 141 |
| abstract_inverted_index.transverse | 90 |
| abstract_inverted_index.classifier, | 176 |
| abstract_inverted_index.constituent | 104, 121 |
| abstract_inverted_index.lower-level | 102 |
| abstract_inverted_index.measurement | 184 |
| abstract_inverted_index.performance | 55, 131, 170 |
| abstract_inverted_index.significant | 169 |
| abstract_inverted_index.statistical | 145 |
| abstract_inverted_index.information, | 105 |
| abstract_inverted_index.information. | 111 |
| abstract_inverted_index.multi-domain | 84, 127 |
| abstract_inverted_index.proton-proton | 24 |
| abstract_inverted_index.classification | 125 |
| abstract_inverted_index.discrimination | 54 |
| abstract_inverted_index.discriminators, | 70 |
| abstract_inverted_index.Transformer-based | 75, 152 |
| abstract_inverted_index.Cabibbo-Kobayashi-Maskawa | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |