Improving the Performance of Echo State Networks Through State Feedback Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.15141
Reservoir computing, using nonlinear dynamical systems, offers a cost-effective alternative to neural networks for complex tasks involving processing of sequential data, time series modeling, and system identification. Echo state networks (ESNs), a type of reservoir computer, mirror neural networks but simplify training. They apply fixed, random linear transformations to the internal state, followed by nonlinear changes. This process, guided by input signals and linear regression, adapts the system to match target characteristics, reducing computational demands. A potential drawback of ESNs is that the fixed reservoir may not offer the complexity needed for specific problems. While directly altering (training) the internal ESN would reintroduce the computational burden, an indirect modification can be achieved by redirecting some output as input. This feedback can influence the internal reservoir state, yielding ESNs with enhanced complexity suitable for broader challenges. In this paper, we demonstrate that by feeding some component of the reservoir state back into the network through the input, we can drastically improve upon the performance of a given ESN. We rigorously prove that, for any given ESN, feedback will almost always improve the accuracy of the output. For a set of three tasks, each representing different problem classes, we find that with feedback the average error measures are reduced by $30\%-60\%$. Remarkably, feedback provides at least an equivalent performance boost to doubling the initial number of computational nodes, a computationally expensive and technologically challenging alternative. These results demonstrate the broad applicability and substantial usefulness of this feedback scheme.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.15141
- https://arxiv.org/pdf/2312.15141
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390306026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390306026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.15141Digital Object Identifier
- Title
-
Improving the Performance of Echo State Networks Through State FeedbackWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-23Full publication date if available
- Authors
-
Peter J. Ehlers, Hendra I. Nurdin, Daniel SohList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.15141Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.15141Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.15141Direct OA link when available
- Concepts
-
Reservoir computing, Echo state network, Computer science, Nonlinear system, Computational complexity theory, Artificial neural network, State (computer science), Set (abstract data type), Process (computing), Recurrent neural network, Artificial intelligence, Identification (biology), Algorithm, Programming language, Botany, Quantum mechanics, Operating system, Biology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390306026 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.15141 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.15141 |
| ids.openalex | https://openalex.org/W4390306026 |
| fwci | 0.0 |
| type | preprint |
| title | Improving the Performance of Echo State Networks Through State Feedback |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12611 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Reservoir Computing |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958000183105469 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C135796866 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9573876857757568 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7315328 |
| concepts[0].display_name | Reservoir computing |
| concepts[1].id | https://openalex.org/C172025690 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8683644533157349 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5332763 |
| concepts[1].display_name | Echo state network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7217186689376831 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C158622935 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5781207084655762 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[3].display_name | Nonlinear system |
| concepts[4].id | https://openalex.org/C179799912 |
| concepts[4].level | 2 |
| concepts[4].score | 0.564153790473938 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[4].display_name | Computational complexity theory |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5454744100570679 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C48103436 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5153036117553711 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[6].display_name | State (computer science) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4920486807823181 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4789319932460785 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C147168706 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44164618849754333 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[9].display_name | Recurrent neural network |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4333209693431854 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C116834253 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4229414463043213 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[11].display_name | Identification (biology) |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35036301612854004 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C59822182 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[14].display_name | Botany |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/reservoir-computing |
| keywords[0].score | 0.9573876857757568 |
| keywords[0].display_name | Reservoir computing |
| keywords[1].id | https://openalex.org/keywords/echo-state-network |
| keywords[1].score | 0.8683644533157349 |
| keywords[1].display_name | Echo state network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7217186689376831 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/nonlinear-system |
| keywords[3].score | 0.5781207084655762 |
| keywords[3].display_name | Nonlinear system |
| keywords[4].id | https://openalex.org/keywords/computational-complexity-theory |
| keywords[4].score | 0.564153790473938 |
| keywords[4].display_name | Computational complexity theory |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5454744100570679 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/state |
| keywords[6].score | 0.5153036117553711 |
| keywords[6].display_name | State (computer science) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4920486807823181 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4789319932460785 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[9].score | 0.44164618849754333 |
| keywords[9].display_name | Recurrent neural network |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4333209693431854 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/identification |
| keywords[11].score | 0.4229414463043213 |
| keywords[11].display_name | Identification (biology) |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.35036301612854004 |
| keywords[12].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.15141 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.15141 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.15141 |
| locations[1].id | doi:10.48550/arxiv.2312.15141 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.15141 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007795629 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Peter J. Ehlers |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ehlers, Peter J. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064534342 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5588-4259 |
| authorships[1].author.display_name | Hendra I. Nurdin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nurdin, Hendra I. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066360818 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2562-5675 |
| authorships[2].author.display_name | Daniel Soh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Soh, Daniel |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.15141 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-29T00:00:00 |
| display_name | Improving the Performance of Echo State Networks Through State Feedback |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12611 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Reservoir Computing |
| related_works | https://openalex.org/W57315087, https://openalex.org/W2010974764, https://openalex.org/W4386848428, https://openalex.org/W1996014987, https://openalex.org/W4205631599, https://openalex.org/W2021379535, https://openalex.org/W2903992663, https://openalex.org/W4237814686, https://openalex.org/W2997427060, https://openalex.org/W2953065922 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.15141 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.15141 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.15141 |
| primary_location.id | pmh:oai:arXiv.org:2312.15141 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.15141 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.15141 |
| publication_date | 2023-12-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 75 |
| abstract_inverted_index.a | 7, 31, 164, 186, 226 |
| abstract_inverted_index.In | 135 |
| abstract_inverted_index.We | 167 |
| abstract_inverted_index.an | 106, 214 |
| abstract_inverted_index.as | 116 |
| abstract_inverted_index.at | 212 |
| abstract_inverted_index.be | 110 |
| abstract_inverted_index.by | 53, 59, 112, 141, 207 |
| abstract_inverted_index.is | 80 |
| abstract_inverted_index.of | 18, 33, 78, 145, 163, 182, 188, 223, 242 |
| abstract_inverted_index.to | 10, 48, 68, 218 |
| abstract_inverted_index.we | 138, 156, 196 |
| abstract_inverted_index.ESN | 100 |
| abstract_inverted_index.For | 185 |
| abstract_inverted_index.and | 24, 62, 229, 239 |
| abstract_inverted_index.any | 172 |
| abstract_inverted_index.are | 205 |
| abstract_inverted_index.but | 39 |
| abstract_inverted_index.can | 109, 120, 157 |
| abstract_inverted_index.for | 13, 91, 132, 171 |
| abstract_inverted_index.may | 85 |
| abstract_inverted_index.not | 86 |
| abstract_inverted_index.set | 187 |
| abstract_inverted_index.the | 49, 66, 82, 88, 98, 103, 122, 146, 151, 154, 161, 180, 183, 201, 220, 236 |
| abstract_inverted_index.ESN, | 174 |
| abstract_inverted_index.ESN. | 166 |
| abstract_inverted_index.ESNs | 79, 127 |
| abstract_inverted_index.Echo | 27 |
| abstract_inverted_index.They | 42 |
| abstract_inverted_index.This | 56, 118 |
| abstract_inverted_index.back | 149 |
| abstract_inverted_index.each | 191 |
| abstract_inverted_index.find | 197 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.some | 114, 143 |
| abstract_inverted_index.that | 81, 140, 198 |
| abstract_inverted_index.this | 136, 243 |
| abstract_inverted_index.time | 21 |
| abstract_inverted_index.type | 32 |
| abstract_inverted_index.upon | 160 |
| abstract_inverted_index.will | 176 |
| abstract_inverted_index.with | 128, 199 |
| abstract_inverted_index.These | 233 |
| abstract_inverted_index.While | 94 |
| abstract_inverted_index.apply | 43 |
| abstract_inverted_index.boost | 217 |
| abstract_inverted_index.broad | 237 |
| abstract_inverted_index.data, | 20 |
| abstract_inverted_index.error | 203 |
| abstract_inverted_index.fixed | 83 |
| abstract_inverted_index.given | 165, 173 |
| abstract_inverted_index.input | 60 |
| abstract_inverted_index.least | 213 |
| abstract_inverted_index.match | 69 |
| abstract_inverted_index.offer | 87 |
| abstract_inverted_index.prove | 169 |
| abstract_inverted_index.state | 28, 148 |
| abstract_inverted_index.tasks | 15 |
| abstract_inverted_index.that, | 170 |
| abstract_inverted_index.three | 189 |
| abstract_inverted_index.using | 2 |
| abstract_inverted_index.would | 101 |
| abstract_inverted_index.adapts | 65 |
| abstract_inverted_index.almost | 177 |
| abstract_inverted_index.always | 178 |
| abstract_inverted_index.fixed, | 44 |
| abstract_inverted_index.guided | 58 |
| abstract_inverted_index.input, | 155 |
| abstract_inverted_index.input. | 117 |
| abstract_inverted_index.linear | 46, 63 |
| abstract_inverted_index.mirror | 36 |
| abstract_inverted_index.needed | 90 |
| abstract_inverted_index.neural | 11, 37 |
| abstract_inverted_index.nodes, | 225 |
| abstract_inverted_index.number | 222 |
| abstract_inverted_index.offers | 6 |
| abstract_inverted_index.output | 115 |
| abstract_inverted_index.paper, | 137 |
| abstract_inverted_index.random | 45 |
| abstract_inverted_index.series | 22 |
| abstract_inverted_index.state, | 51, 125 |
| abstract_inverted_index.system | 25, 67 |
| abstract_inverted_index.target | 70 |
| abstract_inverted_index.tasks, | 190 |
| abstract_inverted_index.(ESNs), | 30 |
| abstract_inverted_index.average | 202 |
| abstract_inverted_index.broader | 133 |
| abstract_inverted_index.burden, | 105 |
| abstract_inverted_index.complex | 14 |
| abstract_inverted_index.feeding | 142 |
| abstract_inverted_index.improve | 159, 179 |
| abstract_inverted_index.initial | 221 |
| abstract_inverted_index.network | 152 |
| abstract_inverted_index.output. | 184 |
| abstract_inverted_index.problem | 194 |
| abstract_inverted_index.reduced | 206 |
| abstract_inverted_index.results | 234 |
| abstract_inverted_index.scheme. | 245 |
| abstract_inverted_index.signals | 61 |
| abstract_inverted_index.through | 153 |
| abstract_inverted_index.accuracy | 181 |
| abstract_inverted_index.achieved | 111 |
| abstract_inverted_index.altering | 96 |
| abstract_inverted_index.changes. | 55 |
| abstract_inverted_index.classes, | 195 |
| abstract_inverted_index.demands. | 74 |
| abstract_inverted_index.directly | 95 |
| abstract_inverted_index.doubling | 219 |
| abstract_inverted_index.drawback | 77 |
| abstract_inverted_index.enhanced | 129 |
| abstract_inverted_index.feedback | 119, 175, 200, 210, 244 |
| abstract_inverted_index.followed | 52 |
| abstract_inverted_index.indirect | 107 |
| abstract_inverted_index.internal | 50, 99, 123 |
| abstract_inverted_index.measures | 204 |
| abstract_inverted_index.networks | 12, 29, 38 |
| abstract_inverted_index.process, | 57 |
| abstract_inverted_index.provides | 211 |
| abstract_inverted_index.reducing | 72 |
| abstract_inverted_index.simplify | 40 |
| abstract_inverted_index.specific | 92 |
| abstract_inverted_index.suitable | 131 |
| abstract_inverted_index.systems, | 5 |
| abstract_inverted_index.yielding | 126 |
| abstract_inverted_index.Reservoir | 0 |
| abstract_inverted_index.component | 144 |
| abstract_inverted_index.computer, | 35 |
| abstract_inverted_index.different | 193 |
| abstract_inverted_index.dynamical | 4 |
| abstract_inverted_index.expensive | 228 |
| abstract_inverted_index.influence | 121 |
| abstract_inverted_index.involving | 16 |
| abstract_inverted_index.modeling, | 23 |
| abstract_inverted_index.nonlinear | 3, 54 |
| abstract_inverted_index.potential | 76 |
| abstract_inverted_index.problems. | 93 |
| abstract_inverted_index.reservoir | 34, 84, 124, 147 |
| abstract_inverted_index.training. | 41 |
| abstract_inverted_index.(training) | 97 |
| abstract_inverted_index.complexity | 89, 130 |
| abstract_inverted_index.computing, | 1 |
| abstract_inverted_index.equivalent | 215 |
| abstract_inverted_index.processing | 17 |
| abstract_inverted_index.rigorously | 168 |
| abstract_inverted_index.sequential | 19 |
| abstract_inverted_index.usefulness | 241 |
| abstract_inverted_index.Remarkably, | 209 |
| abstract_inverted_index.alternative | 9 |
| abstract_inverted_index.challenges. | 134 |
| abstract_inverted_index.challenging | 231 |
| abstract_inverted_index.demonstrate | 139, 235 |
| abstract_inverted_index.drastically | 158 |
| abstract_inverted_index.performance | 162, 216 |
| abstract_inverted_index.redirecting | 113 |
| abstract_inverted_index.regression, | 64 |
| abstract_inverted_index.reintroduce | 102 |
| abstract_inverted_index.substantial | 240 |
| abstract_inverted_index.$30\%-60\%$. | 208 |
| abstract_inverted_index.alternative. | 232 |
| abstract_inverted_index.modification | 108 |
| abstract_inverted_index.representing | 192 |
| abstract_inverted_index.applicability | 238 |
| abstract_inverted_index.computational | 73, 104, 224 |
| abstract_inverted_index.cost-effective | 8 |
| abstract_inverted_index.computationally | 227 |
| abstract_inverted_index.identification. | 26 |
| abstract_inverted_index.technologically | 230 |
| abstract_inverted_index.transformations | 47 |
| abstract_inverted_index.characteristics, | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.21395069 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |