Improving the Reproducibility of Computed Tomography Radiomic Features Using an Enhanced Hierarchical Feature Synthesis Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3366989
Radiomics has gained popularity as a quantitative analysis method for medical images. However, computed tomography (CT) scans are performed using various parameters, such as X-ray dose and reconstruction kernels, which is a fundamental reason for the lack of reproducibility of radiomic features. This study evaluated whether the proposed network improves the reproducibility of radiomic features across various CT protocols and reconstruction kernels. We set five CT scan protocols and two reconstruction kernels to create various noise settings for the obtained CT images with an abdominal phantom. We developed an enhanced hierarchical feature synthesis (EHFS) network to improve the reproducibility of radiomic features across various CT protocols and reconstruction kernels. Eight hundred and nineteen radiomic features were extracted, including first-order, second-order, and wavelet features. Reproducibility was assessed using Lin’s concordance correlation coefficient (CCC) on internal and external testing. We considered a radiomic feature with CCC as a high-agreement feature. As a result, the average number of reproducible features increased in all protocols, from 241 ± 38 to 565 ± 11 in internal testing. In external testing, consisting of a new phantom and unseen protocol, 239 ± 74 reproducible features were in source images and 324 ± 16 were in generated images. The EHFS network is a novel approach to improving the reproducibility of radiomic features. It outperforms existing methods in reproducibility and generalization, as demonstrated by comprehensive experiments on both internal and external datasets. Our deep-learning-based CT image conversion could be a solution for standardization in ongoing radiomics research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3366989
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdf
- OA Status
- gold
- Cited By
- 5
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391935915
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391935915Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3366989Digital Object Identifier
- Title
-
Improving the Reproducibility of Computed Tomography Radiomic Features Using an Enhanced Hierarchical Feature Synthesis NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Dawun Jeong, Youngtaek Hong, Jina Lee, Seul Bi Lee, Yeon Jin Cho, Hackjoon Shim, Hyuk‐Jae ChangList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3366989Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdfDirect OA link when available
- Concepts
-
Reproducibility, Imaging phantom, Computer science, Feature (linguistics), Artificial intelligence, Pattern recognition (psychology), Concordance correlation coefficient, Nuclear medicine, Medicine, Mathematics, Statistics, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391935915 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3366989 |
| ids.doi | https://doi.org/10.1109/access.2024.3366989 |
| ids.openalex | https://openalex.org/W4391935915 |
| fwci | 4.09536909 |
| type | article |
| title | Improving the Reproducibility of Computed Tomography Radiomic Features Using an Enhanced Hierarchical Feature Synthesis Network |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 27660 |
| biblio.first_page | 27648 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C9893847 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9326627254486084 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1425625 |
| concepts[0].display_name | Reproducibility |
| concepts[1].id | https://openalex.org/C104293457 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6973140835762024 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[1].display_name | Imaging phantom |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6944496035575867 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6343004703521729 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5686083436012268 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5458694696426392 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C2781059462 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47337502241134644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5158906 |
| concepts[6].display_name | Concordance correlation coefficient |
| concepts[7].id | https://openalex.org/C2989005 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2582308053970337 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[7].display_name | Nuclear medicine |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.18420207500457764 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.17026454210281372 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08894577622413635 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/reproducibility |
| keywords[0].score | 0.9326627254486084 |
| keywords[0].display_name | Reproducibility |
| keywords[1].id | https://openalex.org/keywords/imaging-phantom |
| keywords[1].score | 0.6973140835762024 |
| keywords[1].display_name | Imaging phantom |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6944496035575867 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.6343004703521729 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5686083436012268 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5458694696426392 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/concordance-correlation-coefficient |
| keywords[6].score | 0.47337502241134644 |
| keywords[6].display_name | Concordance correlation coefficient |
| keywords[7].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[7].score | 0.2582308053970337 |
| keywords[7].display_name | Nuclear medicine |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.18420207500457764 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.17026454210281372 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.08894577622413635 |
| keywords[10].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3366989 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3366989 |
| locations[1].id | pmh:oai:doaj.org/article:e38f273a004d415ab2db97267f5fed65 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 27648-27660 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e38f273a004d415ab2db97267f5fed65 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072995217 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9791-9555 |
| authorships[0].author.display_name | Dawun Jeong |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[0].affiliations[0].raw_affiliation_string | Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I193775966 |
| authorships[0].affiliations[1].raw_affiliation_string | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[0].institutions[0].id | https://openalex.org/I193775966 |
| authorships[0].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Yonsei University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dawun Jeong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[1].author.id | https://openalex.org/A5052178012 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2104-5905 |
| authorships[1].author.display_name | Youngtaek Hong |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[1].affiliations[0].raw_affiliation_string | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[1].affiliations[1].raw_affiliation_string | Ontact Health Inc, Seoul, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I193775966 |
| authorships[1].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Yonsei University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Youngtaek Hong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea, Ontact Health Inc, Seoul, South Korea |
| authorships[2].author.id | https://openalex.org/A5100742061 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1395-5474 |
| authorships[2].author.display_name | Jina Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[0].raw_affiliation_string | Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[1].raw_affiliation_string | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[2].institutions[0].id | https://openalex.org/I193775966 |
| authorships[2].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jina Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[3].author.id | https://openalex.org/A5103086104 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5163-3911 |
| authorships[3].author.display_name | Seul Bi Lee |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[3].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Seoul National University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Seul Bi Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5022053302 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9820-3030 |
| authorships[4].author.display_name | Yeon Jin Cho |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802835388 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I2802835388 |
| authorships[4].institutions[0].ror | https://ror.org/01z4nnt86 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802835388 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Seoul National University Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yeon Jin Cho |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5069642038 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6731-0084 |
| authorships[5].author.display_name | Hackjoon Shim |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[5].affiliations[0].raw_affiliation_string | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[5].institutions[0].id | https://openalex.org/I193775966 |
| authorships[5].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Yonsei University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hackjoon Shim |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[6].author.id | https://openalex.org/A5083433064 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6139-7545 |
| authorships[6].author.display_name | Hyuk‐Jae Chang |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[6].affiliations[0].raw_affiliation_string | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210160791 |
| authorships[6].affiliations[1].raw_affiliation_string | Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea |
| authorships[6].institutions[0].id | https://openalex.org/I193775966 |
| authorships[6].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Yonsei University |
| authorships[6].institutions[1].id | https://openalex.org/I4210160791 |
| authorships[6].institutions[1].ror | https://ror.org/04sze3c15 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210160791 |
| authorships[6].institutions[1].country_code | KR |
| authorships[6].institutions[1].display_name | Yonsei University Health System |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hyuk-Jae Chang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | CONNECT-AI Research Center, Yonsei University College of Medicine, Seoul, South Korea, Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Improving the Reproducibility of Computed Tomography Radiomic Features Using an Enhanced Hierarchical Feature Synthesis Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2413717610, https://openalex.org/W1973270181, https://openalex.org/W2417696084, https://openalex.org/W4394569851, https://openalex.org/W4402512266, https://openalex.org/W4386406977, https://openalex.org/W4387734229, https://openalex.org/W3096141767, https://openalex.org/W2626310955, https://openalex.org/W1823705696 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3366989 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3366989 |
| primary_location.id | doi:10.1109/access.2024.3366989 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10439178.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3366989 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2174661749, https://openalex.org/W2900422713, https://openalex.org/W2801894005, https://openalex.org/W2950030754, https://openalex.org/W2950086191, https://openalex.org/W4206953207, https://openalex.org/W2791506213, https://openalex.org/W2977270522, https://openalex.org/W2964046397, https://openalex.org/W2743780012, https://openalex.org/W2949942603, https://openalex.org/W3209347845, https://openalex.org/W3031404851, https://openalex.org/W3200151622, https://openalex.org/W4205209181, https://openalex.org/W3215136412, https://openalex.org/W3034247386, https://openalex.org/W2884585870, https://openalex.org/W2963470893, https://openalex.org/W1677182931, https://openalex.org/W6692550842, https://openalex.org/W2331128040, https://openalex.org/W6687214662, https://openalex.org/W6637373629, https://openalex.org/W2995072672, https://openalex.org/W6631190155, https://openalex.org/W2133665775, https://openalex.org/W2064076387, https://openalex.org/W4368342591, https://openalex.org/W2767128594, https://openalex.org/W4319063757, https://openalex.org/W3207711392, https://openalex.org/W4220730149, https://openalex.org/W3187121674, https://openalex.org/W2981959691, https://openalex.org/W4362474290, https://openalex.org/W4318486292, https://openalex.org/W2313339984, https://openalex.org/W2901906577, https://openalex.org/W2922347875, https://openalex.org/W2327203407, https://openalex.org/W2056370875, https://openalex.org/W2041114617, https://openalex.org/W2004703305, https://openalex.org/W2103004421, https://openalex.org/W2985260969, https://openalex.org/W3158735907, https://openalex.org/W2128505783, https://openalex.org/W3211463844, https://openalex.org/W2848312316, https://openalex.org/W2963864522, https://openalex.org/W1522301498, https://openalex.org/W1686810756 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 5, 31, 139, 149, 153, 181, 208, 244 |
| abstract_inverted_index.11 | 172 |
| abstract_inverted_index.16 | 199 |
| abstract_inverted_index.38 | 168 |
| abstract_inverted_index.74 | 189 |
| abstract_inverted_index.As | 152 |
| abstract_inverted_index.CT | 57, 65, 80, 104, 239 |
| abstract_inverted_index.In | 176 |
| abstract_inverted_index.It | 218 |
| abstract_inverted_index.We | 62, 86, 137 |
| abstract_inverted_index.an | 83, 88 |
| abstract_inverted_index.as | 4, 23, 148, 226 |
| abstract_inverted_index.be | 243 |
| abstract_inverted_index.by | 228 |
| abstract_inverted_index.in | 162, 173, 193, 201, 222, 248 |
| abstract_inverted_index.is | 30, 207 |
| abstract_inverted_index.of | 37, 39, 52, 99, 158, 180, 215 |
| abstract_inverted_index.on | 132, 231 |
| abstract_inverted_index.to | 72, 95, 169, 211 |
| abstract_inverted_index.239 | 187 |
| abstract_inverted_index.241 | 166 |
| abstract_inverted_index.324 | 197 |
| abstract_inverted_index.565 | 170 |
| abstract_inverted_index.CCC | 143 |
| abstract_inverted_index.Our | 237 |
| abstract_inverted_index.The | 204 |
| abstract_inverted_index.all | 163 |
| abstract_inverted_index.and | 26, 59, 68, 106, 111, 120, 134, 184, 196, 224, 234 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.for | 9, 34, 77, 246 |
| abstract_inverted_index.has | 1 |
| abstract_inverted_index.new | 182 |
| abstract_inverted_index.set | 63 |
| abstract_inverted_index.the | 35, 46, 50, 78, 97, 155, 213 |
| abstract_inverted_index.two | 69 |
| abstract_inverted_index.was | 124 |
| abstract_inverted_index.(CT) | 15 |
| abstract_inverted_index.EHFS | 205 |
| abstract_inverted_index.This | 42 |
| abstract_inverted_index.both | 232 |
| abstract_inverted_index.dose | 25 |
| abstract_inverted_index.five | 64 |
| abstract_inverted_index.from | 165 |
| abstract_inverted_index.lack | 36 |
| abstract_inverted_index.scan | 66 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.were | 115, 192, 200 |
| abstract_inverted_index.with | 82, 142 |
| abstract_inverted_index.(CCC) | 131 |
| abstract_inverted_index.Eight | 109 |
| abstract_inverted_index.X-ray | 24 |
| abstract_inverted_index.could | 242 |
| abstract_inverted_index.image | 240 |
| abstract_inverted_index.noise | 75 |
| abstract_inverted_index.novel | 209 |
| abstract_inverted_index.scans | 16 |
| abstract_inverted_index.study | 43 |
| abstract_inverted_index.using | 19, 126 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.(EHFS) | 93 |
| abstract_inverted_index.across | 55, 102 |
| abstract_inverted_index.create | 73 |
| abstract_inverted_index.gained | 2 |
| abstract_inverted_index.images | 81, 195 |
| abstract_inverted_index.method | 8 |
| abstract_inverted_index.number | 157 |
| abstract_inverted_index.reason | 33 |
| abstract_inverted_index.source | 194 |
| abstract_inverted_index.unseen | 185 |
| abstract_inverted_index.average | 156 |
| abstract_inverted_index.feature | 91, 141 |
| abstract_inverted_index.hundred | 110 |
| abstract_inverted_index.images. | 11, 203 |
| abstract_inverted_index.improve | 96 |
| abstract_inverted_index.kernels | 71 |
| abstract_inverted_index.medical | 10 |
| abstract_inverted_index.methods | 221 |
| abstract_inverted_index.network | 48, 94, 206 |
| abstract_inverted_index.ongoing | 249 |
| abstract_inverted_index.phantom | 183 |
| abstract_inverted_index.result, | 154 |
| abstract_inverted_index.various | 20, 56, 74, 103 |
| abstract_inverted_index.wavelet | 121 |
| abstract_inverted_index.whether | 45 |
| abstract_inverted_index.± | 167, 171, 188, 198 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.analysis | 7 |
| abstract_inverted_index.approach | 210 |
| abstract_inverted_index.assessed | 125 |
| abstract_inverted_index.computed | 13 |
| abstract_inverted_index.enhanced | 89 |
| abstract_inverted_index.existing | 220 |
| abstract_inverted_index.external | 135, 177, 235 |
| abstract_inverted_index.feature. | 151 |
| abstract_inverted_index.features | 54, 101, 114, 160, 191 |
| abstract_inverted_index.improves | 49 |
| abstract_inverted_index.internal | 133, 174, 233 |
| abstract_inverted_index.kernels, | 28 |
| abstract_inverted_index.kernels. | 61, 108 |
| abstract_inverted_index.nineteen | 112 |
| abstract_inverted_index.obtained | 79 |
| abstract_inverted_index.phantom. | 85 |
| abstract_inverted_index.proposed | 47 |
| abstract_inverted_index.radiomic | 40, 53, 100, 113, 140, 216 |
| abstract_inverted_index.settings | 76 |
| abstract_inverted_index.solution | 245 |
| abstract_inverted_index.testing, | 178 |
| abstract_inverted_index.testing. | 136, 175 |
| abstract_inverted_index.<tex-math | 145 |
| abstract_inverted_index.Radiomics | 0 |
| abstract_inverted_index.abdominal | 84 |
| abstract_inverted_index.datasets. | 236 |
| abstract_inverted_index.developed | 87 |
| abstract_inverted_index.evaluated | 44 |
| abstract_inverted_index.features. | 41, 122, 217 |
| abstract_inverted_index.generated | 202 |
| abstract_inverted_index.improving | 212 |
| abstract_inverted_index.including | 117 |
| abstract_inverted_index.increased | 161 |
| abstract_inverted_index.performed | 18 |
| abstract_inverted_index.protocol, | 186 |
| abstract_inverted_index.protocols | 58, 67, 105 |
| abstract_inverted_index.radiomics | 250 |
| abstract_inverted_index.research. | 251 |
| abstract_inverted_index.synthesis | 92 |
| abstract_inverted_index.considered | 138 |
| abstract_inverted_index.consisting | 179 |
| abstract_inverted_index.conversion | 241 |
| abstract_inverted_index.extracted, | 116 |
| abstract_inverted_index.popularity | 3 |
| abstract_inverted_index.protocols, | 164 |
| abstract_inverted_index.tomography | 14 |
| abstract_inverted_index.coefficient | 130 |
| abstract_inverted_index.concordance | 128 |
| abstract_inverted_index.correlation | 129 |
| abstract_inverted_index.experiments | 230 |
| abstract_inverted_index.fundamental | 32 |
| abstract_inverted_index.outperforms | 219 |
| abstract_inverted_index.parameters, | 21 |
| abstract_inverted_index.Lin’s | 127 |
| abstract_inverted_index.demonstrated | 227 |
| abstract_inverted_index.first-order, | 118 |
| abstract_inverted_index.hierarchical | 90 |
| abstract_inverted_index.quantitative | 6 |
| abstract_inverted_index.reproducible | 159, 190 |
| abstract_inverted_index.comprehensive | 229 |
| abstract_inverted_index.second-order, | 119 |
| abstract_inverted_index.high-agreement | 150 |
| abstract_inverted_index.reconstruction | 27, 60, 70, 107 |
| abstract_inverted_index.Reproducibility | 123 |
| abstract_inverted_index.generalization, | 225 |
| abstract_inverted_index.reproducibility | 38, 51, 98, 214, 223 |
| abstract_inverted_index.standardization | 247 |
| abstract_inverted_index.<inline-formula> | 144 |
| abstract_inverted_index.deep-learning-based | 238 |
| abstract_inverted_index.notation="LaTeX">$\ge0.85$ | 146 |
| abstract_inverted_index.</tex-math></inline-formula> | 147 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.89124603 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |