Improving the Robustness of Neural Multiplication Units with Reversible Stochasticity Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.05624
Multilayer Perceptrons struggle to learn certain simple arithmetic tasks. Specialist neural modules for arithmetic can outperform classical architectures with gains in extrapolation, interpretability and convergence speeds, but are highly sensitive to the training range. In this paper, we show that Neural Multiplication Units (NMUs) are unable to reliably learn tasks as simple as multiplying two inputs when given different training ranges. Causes of failure are linked to inductive and input biases which encourage convergence to solutions in undesirable optima. A solution, the stochastic NMU (sNMU), is proposed to apply reversible stochasticity, encouraging avoidance of such optima whilst converging to the true solution. Empirically, we show that stochasticity provides improved robustness with the potential to improve learned representations of upstream networks for numerical and image tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.05624
- https://arxiv.org/pdf/2211.05624
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308830586
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308830586Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.05624Digital Object Identifier
- Title
-
Improving the Robustness of Neural Multiplication Units with Reversible StochasticityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-10Full publication date if available
- Authors
-
Bhumika Mistry, Katayoun Farrahi, Jonathon HareList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.05624Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.05624Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.05624Direct OA link when available
- Concepts
-
Interpretability, Robustness (evolution), Perceptron, Extrapolation, Artificial neural network, Computer science, Multiplication (music), Artificial intelligence, Range (aeronautics), Convergence (economics), Machine learning, Mathematical optimization, Mathematics, Statistics, Engineering, Economic growth, Aerospace engineering, Combinatorics, Chemistry, Biochemistry, Economics, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308830586 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.05624 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.05624 |
| ids.openalex | https://openalex.org/W4308830586 |
| fwci | |
| type | preprint |
| title | Improving the Robustness of Neural Multiplication Units with Reversible Stochasticity |
| awards[0].id | https://openalex.org/G3496335909 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/S030069/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8185243606567383 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7625246047973633 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C60908668 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6946650743484497 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[2].display_name | Perceptron |
| concepts[3].id | https://openalex.org/C132459708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6874505281448364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q744069 |
| concepts[3].display_name | Extrapolation |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6597837209701538 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6462075710296631 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2780595030 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6259949207305908 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3860309 |
| concepts[6].display_name | Multiplication (music) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44319912791252136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C204323151 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4400234520435333 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[8].display_name | Range (aeronautics) |
| concepts[9].id | https://openalex.org/C2777303404 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42932140827178955 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[9].display_name | Convergence (economics) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36014944314956665 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35409730672836304 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.25988873839378357 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09084168076515198 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07200923562049866 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C114614502 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[17].display_name | Combinatorics |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C104317684 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[21].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8185243606567383 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7625246047973633 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/perceptron |
| keywords[2].score | 0.6946650743484497 |
| keywords[2].display_name | Perceptron |
| keywords[3].id | https://openalex.org/keywords/extrapolation |
| keywords[3].score | 0.6874505281448364 |
| keywords[3].display_name | Extrapolation |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6597837209701538 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6462075710296631 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/multiplication |
| keywords[6].score | 0.6259949207305908 |
| keywords[6].display_name | Multiplication (music) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.44319912791252136 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/range |
| keywords[8].score | 0.4400234520435333 |
| keywords[8].display_name | Range (aeronautics) |
| keywords[9].id | https://openalex.org/keywords/convergence |
| keywords[9].score | 0.42932140827178955 |
| keywords[9].display_name | Convergence (economics) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.36014944314956665 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.35409730672836304 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.25988873839378357 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.09084168076515198 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.07200923562049866 |
| keywords[14].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.05624 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.05624 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.05624 |
| locations[1].id | doi:10.48550/arxiv.2211.05624 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.05624 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064223685 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4555-0121 |
| authorships[0].author.display_name | Bhumika Mistry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mistry, Bhumika |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077531047 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6775-127X |
| authorships[1].author.display_name | Katayoun Farrahi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Farrahi, Katayoun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067505586 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2921-4283 |
| authorships[2].author.display_name | Jonathon Hare |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hare, Jonathon |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.05624 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-16T00:00:00 |
| display_name | Improving the Robustness of Neural Multiplication Units with Reversible Stochasticity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W2809283485, https://openalex.org/W4293768783, https://openalex.org/W4288347394, https://openalex.org/W1965559057, https://openalex.org/W2122216001 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.05624 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.05624 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.05624 |
| primary_location.id | pmh:oai:arXiv.org:2211.05624 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.05624 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.05624 |
| publication_date | 2022-11-10 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 79 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.as | 50, 52 |
| abstract_inverted_index.in | 20, 76 |
| abstract_inverted_index.is | 85 |
| abstract_inverted_index.of | 62, 93, 117 |
| abstract_inverted_index.to | 3, 30, 46, 66, 74, 87, 98, 113 |
| abstract_inverted_index.we | 37, 103 |
| abstract_inverted_index.NMU | 83 |
| abstract_inverted_index.and | 23, 68, 122 |
| abstract_inverted_index.are | 27, 44, 64 |
| abstract_inverted_index.but | 26 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.for | 12, 120 |
| abstract_inverted_index.the | 31, 81, 99, 111 |
| abstract_inverted_index.two | 54 |
| abstract_inverted_index.show | 38, 104 |
| abstract_inverted_index.such | 94 |
| abstract_inverted_index.that | 39, 105 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.true | 100 |
| abstract_inverted_index.when | 56 |
| abstract_inverted_index.with | 18, 110 |
| abstract_inverted_index.Units | 42 |
| abstract_inverted_index.apply | 88 |
| abstract_inverted_index.gains | 19 |
| abstract_inverted_index.given | 57 |
| abstract_inverted_index.image | 123 |
| abstract_inverted_index.input | 69 |
| abstract_inverted_index.learn | 4, 48 |
| abstract_inverted_index.tasks | 49 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.(NMUs) | 43 |
| abstract_inverted_index.Causes | 61 |
| abstract_inverted_index.Neural | 40 |
| abstract_inverted_index.biases | 70 |
| abstract_inverted_index.highly | 28 |
| abstract_inverted_index.inputs | 55 |
| abstract_inverted_index.linked | 65 |
| abstract_inverted_index.neural | 10 |
| abstract_inverted_index.optima | 95 |
| abstract_inverted_index.paper, | 36 |
| abstract_inverted_index.range. | 33 |
| abstract_inverted_index.simple | 6, 51 |
| abstract_inverted_index.tasks. | 8, 124 |
| abstract_inverted_index.unable | 45 |
| abstract_inverted_index.whilst | 96 |
| abstract_inverted_index.(sNMU), | 84 |
| abstract_inverted_index.certain | 5 |
| abstract_inverted_index.failure | 63 |
| abstract_inverted_index.improve | 114 |
| abstract_inverted_index.learned | 115 |
| abstract_inverted_index.modules | 11 |
| abstract_inverted_index.optima. | 78 |
| abstract_inverted_index.ranges. | 60 |
| abstract_inverted_index.speeds, | 25 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.networks | 119 |
| abstract_inverted_index.proposed | 86 |
| abstract_inverted_index.provides | 107 |
| abstract_inverted_index.reliably | 47 |
| abstract_inverted_index.struggle | 2 |
| abstract_inverted_index.training | 32, 59 |
| abstract_inverted_index.upstream | 118 |
| abstract_inverted_index.avoidance | 92 |
| abstract_inverted_index.classical | 16 |
| abstract_inverted_index.different | 58 |
| abstract_inverted_index.encourage | 72 |
| abstract_inverted_index.inductive | 67 |
| abstract_inverted_index.numerical | 121 |
| abstract_inverted_index.potential | 112 |
| abstract_inverted_index.sensitive | 29 |
| abstract_inverted_index.solution, | 80 |
| abstract_inverted_index.solution. | 101 |
| abstract_inverted_index.solutions | 75 |
| abstract_inverted_index.Multilayer | 0 |
| abstract_inverted_index.Specialist | 9 |
| abstract_inverted_index.arithmetic | 7, 13 |
| abstract_inverted_index.converging | 97 |
| abstract_inverted_index.outperform | 15 |
| abstract_inverted_index.reversible | 89 |
| abstract_inverted_index.robustness | 109 |
| abstract_inverted_index.stochastic | 82 |
| abstract_inverted_index.Perceptrons | 1 |
| abstract_inverted_index.convergence | 24, 73 |
| abstract_inverted_index.encouraging | 91 |
| abstract_inverted_index.multiplying | 53 |
| abstract_inverted_index.undesirable | 77 |
| abstract_inverted_index.Empirically, | 102 |
| abstract_inverted_index.architectures | 17 |
| abstract_inverted_index.stochasticity | 106 |
| abstract_inverted_index.Multiplication | 41 |
| abstract_inverted_index.extrapolation, | 21 |
| abstract_inverted_index.stochasticity, | 90 |
| abstract_inverted_index.representations | 116 |
| abstract_inverted_index.interpretability | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |