In-Memory Distributed Mosaicking for Large-Scale Remote Sensing Applications with Geo-Gridded Data Staging on Alluxio Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14235987
The unprecedented availability of petascale analysis-ready earth observation data has given rise to a remarkable surge in demand for regional to global environmental studies, which exploit tons of data for temporal–spatial analysis at a much larger scale than ever. Imagery mosaicking, which is critical for forming “One Map” with a continuous view for large-scale climate research, has drawn significant concern. However, despite employing distributed data processing engines such as Spark, large-scale data mosaicking still significantly suffers from a staggering number of remote sensing images which could inevitably lead to discouraging performance. The main ill-posed problem of traditional parallel mosaicking algorithms is inherent in the huge computation demand and incredible heavy data I/O burden resulting from intensively shifting tremendous RS data back and forth between limited local memory and bulk external storage throughout the multiple processing stages. To address these issues, we propose an in-memory Spark-enabled distributed data mosaicking at a large scale with geo-gridded data staging accelerated by Alluxio. It organizes enormous “messy” remote sensing datasets into geo-encoded gird groups and indexes them with multi-dimensional space-filling curves geo-encoding assisted by GeoTrellis. All the buckets of geo-grided remote sensing data groups could be loaded directly from Alluxio with data prefetching and expressed as RDDs implemented concurrently as grid tasks of mosaicking on top of the Spark-enabled cluster. It is worth noticing that an in-memory data orchestration is offered to facilitate in-memory big data staging among multiple mosaicking processing stages to eliminate the tremendous data transferring at a great extent while maintaining a better data locality. As a result, benefiting from parallel processing with distributed data prefetching and in-memory data staging, this is a much more effective approach to facilitate large-scale data mosaicking in the context of big data. Experimental results have demonstrated our approach is much more efficient and scalable than the traditional ways of parallel implementing.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14235987
- https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121
- OA Status
- gold
- Cited By
- 6
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310184809
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310184809Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14235987Digital Object Identifier
- Title
-
In-Memory Distributed Mosaicking for Large-Scale Remote Sensing Applications with Geo-Gridded Data Staging on AlluxioWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-25Full publication date if available
- Authors
-
Yan Ma, Jie Song, Zhixin ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14235987Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121Direct OA link when available
- Concepts
-
Computer science, SPARK (programming language), Petascale computing, Scale (ratio), Data processing, Big data, Computer data storage, Grid, Remote sensing, Scalability, Database, Data mining, Computer hardware, Cartography, Geology, Geography, Geodesy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310184809 |
|---|---|
| doi | https://doi.org/10.3390/rs14235987 |
| ids.doi | https://doi.org/10.3390/rs14235987 |
| ids.openalex | https://openalex.org/W4310184809 |
| fwci | 0.74275081 |
| type | article |
| title | In-Memory Distributed Mosaicking for Large-Scale Remote Sensing Applications with Geo-Gridded Data Staging on Alluxio |
| biblio.issue | 23 |
| biblio.volume | 14 |
| biblio.last_page | 5987 |
| biblio.first_page | 5987 |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T11106 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9746999740600586 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Data Management and Algorithms |
| topics[2].id | https://openalex.org/T11896 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9666000008583069 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Opportunistic and Delay-Tolerant Networks |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7893380522727966 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781215313 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6995028257369995 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3493345 |
| concepts[1].display_name | SPARK (programming language) |
| concepts[2].id | https://openalex.org/C185410017 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5283841490745544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7171778 |
| concepts[2].display_name | Petascale computing |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5198196172714233 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C138827492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4984409809112549 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[4].display_name | Data processing |
| concepts[5].id | https://openalex.org/C75684735 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48024824261665344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[5].display_name | Big data |
| concepts[6].id | https://openalex.org/C194739806 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4489636719226837 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q66221 |
| concepts[6].display_name | Computer data storage |
| concepts[7].id | https://openalex.org/C187691185 |
| concepts[7].level | 2 |
| concepts[7].score | 0.433333158493042 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[7].display_name | Grid |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4189684987068176 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C48044578 |
| concepts[9].level | 2 |
| concepts[9].score | 0.317680299282074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[9].display_name | Scalability |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23700690269470215 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2222636342048645 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C9390403 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14835476875305176 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[12].display_name | Computer hardware |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1455678939819336 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10176023840904236 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7893380522727966 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/spark |
| keywords[1].score | 0.6995028257369995 |
| keywords[1].display_name | SPARK (programming language) |
| keywords[2].id | https://openalex.org/keywords/petascale-computing |
| keywords[2].score | 0.5283841490745544 |
| keywords[2].display_name | Petascale computing |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5198196172714233 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/data-processing |
| keywords[4].score | 0.4984409809112549 |
| keywords[4].display_name | Data processing |
| keywords[5].id | https://openalex.org/keywords/big-data |
| keywords[5].score | 0.48024824261665344 |
| keywords[5].display_name | Big data |
| keywords[6].id | https://openalex.org/keywords/computer-data-storage |
| keywords[6].score | 0.4489636719226837 |
| keywords[6].display_name | Computer data storage |
| keywords[7].id | https://openalex.org/keywords/grid |
| keywords[7].score | 0.433333158493042 |
| keywords[7].display_name | Grid |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.4189684987068176 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/scalability |
| keywords[9].score | 0.317680299282074 |
| keywords[9].display_name | Scalability |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.23700690269470215 |
| keywords[10].display_name | Database |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.2222636342048645 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/computer-hardware |
| keywords[12].score | 0.14835476875305176 |
| keywords[12].display_name | Computer hardware |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.1455678939819336 |
| keywords[13].display_name | Cartography |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.10176023840904236 |
| keywords[14].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs14235987 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14235987 |
| locations[1].id | pmh:oai:doaj.org/article:ba1c7cf51f844fb4ae4918373a71e128 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 23, p 5987 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/ba1c7cf51f844fb4ae4918373a71e128 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/23/5987/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 23; Pages: 5987 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14235987 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102862727 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-2525-0055 |
| authorships[0].author.display_name | Yan Ma |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[0].affiliations[0].raw_affiliation_string | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210165038 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210137199 |
| authorships[0].institutions[0].ror | https://ror.org/0419fj215 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Aerospace Information Research Institute |
| authorships[0].institutions[1].id | https://openalex.org/I19820366 |
| authorships[0].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| authorships[1].author.id | https://openalex.org/A5100612516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9077-141X |
| authorships[1].author.display_name | Jie Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[1].affiliations[1].raw_affiliation_string | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210137199 |
| authorships[1].institutions[0].ror | https://ror.org/0419fj215 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Aerospace Information Research Institute |
| authorships[1].institutions[1].id | https://openalex.org/I19820366 |
| authorships[1].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[1].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[1].institutions[2].country_code | CN |
| authorships[1].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Song |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| authorships[2].author.id | https://openalex.org/A5100643820 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2766-3739 |
| authorships[2].author.display_name | Zhixin Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[2].affiliations[1].raw_affiliation_string | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210137199 |
| authorships[2].institutions[0].ror | https://ror.org/0419fj215 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210137199 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Aerospace Information Research Institute |
| authorships[2].institutions[1].id | https://openalex.org/I19820366 |
| authorships[2].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[2].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhixin Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100089, China, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100089, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-30T00:00:00 |
| display_name | In-Memory Distributed Mosaicking for Large-Scale Remote Sensing Applications with Geo-Gridded Data Staging on Alluxio |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W1970451660, https://openalex.org/W2085974832, https://openalex.org/W2114834656, https://openalex.org/W2766461310, https://openalex.org/W4247566972, https://openalex.org/W4388692845, https://openalex.org/W3202731209, https://openalex.org/W3211874991, https://openalex.org/W2952147101, https://openalex.org/W4299589629 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14235987 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14235987 |
| primary_location.id | doi:10.3390/rs14235987 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/23/5987/pdf?version=1670552121 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14235987 |
| publication_date | 2022-11-25 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3205807551, https://openalex.org/W2833286549, https://openalex.org/W2756151426, https://openalex.org/W6679332109, https://openalex.org/W2614909249, https://openalex.org/W2095483845, https://openalex.org/W2947494554, https://openalex.org/W6949724461, https://openalex.org/W2922388164, https://openalex.org/W2554311679, https://openalex.org/W2885601213, https://openalex.org/W2772403108, https://openalex.org/W6627545518, https://openalex.org/W2133661437, https://openalex.org/W2116627051, https://openalex.org/W2126060993, https://openalex.org/W2994745448, https://openalex.org/W2091783684, https://openalex.org/W3183653952, https://openalex.org/W3033969337, https://openalex.org/W2164131390, https://openalex.org/W3045528208, https://openalex.org/W3160426019, https://openalex.org/W2886041340, https://openalex.org/W2912717711, https://openalex.org/W1980129283, https://openalex.org/W2765154825, https://openalex.org/W3026331126, https://openalex.org/W2045040977, https://openalex.org/W2934392475, https://openalex.org/W6608654248, https://openalex.org/W6754256767, https://openalex.org/W2919834265, https://openalex.org/W1591388113, https://openalex.org/W3205466039, https://openalex.org/W2080539473, https://openalex.org/W2021131789, https://openalex.org/W3139316975, https://openalex.org/W2752324294, https://openalex.org/W6784665873, https://openalex.org/W2746069471, https://openalex.org/W1755572302, https://openalex.org/W2133414444, https://openalex.org/W2921298358, https://openalex.org/W2131975293, https://openalex.org/W2246127243, https://openalex.org/W1985113960, https://openalex.org/W2775192194, https://openalex.org/W2221106743, https://openalex.org/W2927010514, https://openalex.org/W3007314771, https://openalex.org/W2294991709, https://openalex.org/W1123101191, https://openalex.org/W2295338537, https://openalex.org/W3016363360, https://openalex.org/W4238584892, https://openalex.org/W2042599019, https://openalex.org/W3162803548, https://openalex.org/W1999984505, https://openalex.org/W2494684283, https://openalex.org/W6610084233, https://openalex.org/W2107094302, https://openalex.org/W3095113756, https://openalex.org/W278246498, https://openalex.org/W220519675, https://openalex.org/W3099985666, https://openalex.org/W2131476760, https://openalex.org/W1145502669 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 13, 33, 49, 77, 149, 245, 250, 255, 271 |
| abstract_inverted_index.As | 254 |
| abstract_inverted_index.It | 159, 216 |
| abstract_inverted_index.RS | 118 |
| abstract_inverted_index.To | 136 |
| abstract_inverted_index.an | 142, 221 |
| abstract_inverted_index.as | 68, 201, 205 |
| abstract_inverted_index.at | 32, 148, 244 |
| abstract_inverted_index.be | 191 |
| abstract_inverted_index.by | 157, 179 |
| abstract_inverted_index.in | 16, 102, 281 |
| abstract_inverted_index.is | 42, 100, 217, 225, 270, 293 |
| abstract_inverted_index.of | 3, 27, 80, 95, 184, 208, 212, 284, 303 |
| abstract_inverted_index.on | 210 |
| abstract_inverted_index.to | 12, 20, 88, 227, 238, 276 |
| abstract_inverted_index.we | 140 |
| abstract_inverted_index.All | 181 |
| abstract_inverted_index.I/O | 111 |
| abstract_inverted_index.The | 0, 91 |
| abstract_inverted_index.and | 107, 121, 127, 170, 199, 265, 297 |
| abstract_inverted_index.big | 230, 285 |
| abstract_inverted_index.for | 18, 29, 44, 52 |
| abstract_inverted_index.has | 9, 56 |
| abstract_inverted_index.our | 291 |
| abstract_inverted_index.the | 103, 132, 182, 213, 240, 282, 300 |
| abstract_inverted_index.top | 211 |
| abstract_inverted_index.RDDs | 202 |
| abstract_inverted_index.back | 120 |
| abstract_inverted_index.bulk | 128 |
| abstract_inverted_index.data | 8, 28, 64, 71, 110, 119, 146, 154, 188, 197, 223, 231, 242, 252, 263, 267, 279 |
| abstract_inverted_index.from | 76, 114, 194, 258 |
| abstract_inverted_index.gird | 168 |
| abstract_inverted_index.grid | 206 |
| abstract_inverted_index.have | 289 |
| abstract_inverted_index.huge | 104 |
| abstract_inverted_index.into | 166 |
| abstract_inverted_index.lead | 87 |
| abstract_inverted_index.main | 92 |
| abstract_inverted_index.more | 273, 295 |
| abstract_inverted_index.much | 34, 272, 294 |
| abstract_inverted_index.rise | 11 |
| abstract_inverted_index.such | 67 |
| abstract_inverted_index.than | 37, 299 |
| abstract_inverted_index.that | 220 |
| abstract_inverted_index.them | 172 |
| abstract_inverted_index.this | 269 |
| abstract_inverted_index.tons | 26 |
| abstract_inverted_index.view | 51 |
| abstract_inverted_index.ways | 302 |
| abstract_inverted_index.with | 48, 152, 173, 196, 261 |
| abstract_inverted_index.among | 233 |
| abstract_inverted_index.could | 85, 190 |
| abstract_inverted_index.data. | 286 |
| abstract_inverted_index.drawn | 57 |
| abstract_inverted_index.earth | 6 |
| abstract_inverted_index.ever. | 38 |
| abstract_inverted_index.forth | 122 |
| abstract_inverted_index.given | 10 |
| abstract_inverted_index.great | 246 |
| abstract_inverted_index.heavy | 109 |
| abstract_inverted_index.large | 150 |
| abstract_inverted_index.local | 125 |
| abstract_inverted_index.scale | 36, 151 |
| abstract_inverted_index.still | 73 |
| abstract_inverted_index.surge | 15 |
| abstract_inverted_index.tasks | 207 |
| abstract_inverted_index.these | 138 |
| abstract_inverted_index.which | 24, 41, 84 |
| abstract_inverted_index.while | 248 |
| abstract_inverted_index.worth | 218 |
| abstract_inverted_index.Map” | 47 |
| abstract_inverted_index.Spark, | 69 |
| abstract_inverted_index.better | 251 |
| abstract_inverted_index.burden | 112 |
| abstract_inverted_index.curves | 176 |
| abstract_inverted_index.demand | 17, 106 |
| abstract_inverted_index.extent | 247 |
| abstract_inverted_index.global | 21 |
| abstract_inverted_index.groups | 169, 189 |
| abstract_inverted_index.images | 83 |
| abstract_inverted_index.larger | 35 |
| abstract_inverted_index.loaded | 192 |
| abstract_inverted_index.memory | 126 |
| abstract_inverted_index.number | 79 |
| abstract_inverted_index.remote | 81, 163, 186 |
| abstract_inverted_index.stages | 237 |
| abstract_inverted_index.“One | 46 |
| abstract_inverted_index.Alluxio | 195 |
| abstract_inverted_index.Imagery | 39 |
| abstract_inverted_index.address | 137 |
| abstract_inverted_index.between | 123 |
| abstract_inverted_index.buckets | 183 |
| abstract_inverted_index.climate | 54 |
| abstract_inverted_index.context | 283 |
| abstract_inverted_index.despite | 61 |
| abstract_inverted_index.engines | 66 |
| abstract_inverted_index.exploit | 25 |
| abstract_inverted_index.forming | 45 |
| abstract_inverted_index.indexes | 171 |
| abstract_inverted_index.issues, | 139 |
| abstract_inverted_index.limited | 124 |
| abstract_inverted_index.offered | 226 |
| abstract_inverted_index.problem | 94 |
| abstract_inverted_index.propose | 141 |
| abstract_inverted_index.result, | 256 |
| abstract_inverted_index.results | 288 |
| abstract_inverted_index.sensing | 82, 164, 187 |
| abstract_inverted_index.stages. | 135 |
| abstract_inverted_index.staging | 155, 232 |
| abstract_inverted_index.storage | 130 |
| abstract_inverted_index.suffers | 75 |
| abstract_inverted_index.Alluxio. | 158 |
| abstract_inverted_index.However, | 60 |
| abstract_inverted_index.analysis | 31 |
| abstract_inverted_index.approach | 275, 292 |
| abstract_inverted_index.assisted | 178 |
| abstract_inverted_index.cluster. | 215 |
| abstract_inverted_index.concern. | 59 |
| abstract_inverted_index.critical | 43 |
| abstract_inverted_index.datasets | 165 |
| abstract_inverted_index.directly | 193 |
| abstract_inverted_index.enormous | 161 |
| abstract_inverted_index.external | 129 |
| abstract_inverted_index.inherent | 101 |
| abstract_inverted_index.multiple | 133, 234 |
| abstract_inverted_index.noticing | 219 |
| abstract_inverted_index.parallel | 97, 259, 304 |
| abstract_inverted_index.regional | 19 |
| abstract_inverted_index.scalable | 298 |
| abstract_inverted_index.shifting | 116 |
| abstract_inverted_index.staging, | 268 |
| abstract_inverted_index.studies, | 23 |
| abstract_inverted_index.effective | 274 |
| abstract_inverted_index.efficient | 296 |
| abstract_inverted_index.eliminate | 239 |
| abstract_inverted_index.employing | 62 |
| abstract_inverted_index.expressed | 200 |
| abstract_inverted_index.ill-posed | 93 |
| abstract_inverted_index.in-memory | 143, 222, 229, 266 |
| abstract_inverted_index.locality. | 253 |
| abstract_inverted_index.organizes | 160 |
| abstract_inverted_index.petascale | 4 |
| abstract_inverted_index.research, | 55 |
| abstract_inverted_index.resulting | 113 |
| abstract_inverted_index.algorithms | 99 |
| abstract_inverted_index.benefiting | 257 |
| abstract_inverted_index.continuous | 50 |
| abstract_inverted_index.facilitate | 228, 277 |
| abstract_inverted_index.geo-grided | 185 |
| abstract_inverted_index.incredible | 108 |
| abstract_inverted_index.inevitably | 86 |
| abstract_inverted_index.mosaicking | 72, 98, 147, 209, 235, 280 |
| abstract_inverted_index.processing | 65, 134, 236, 260 |
| abstract_inverted_index.remarkable | 14 |
| abstract_inverted_index.staggering | 78 |
| abstract_inverted_index.throughout | 131 |
| abstract_inverted_index.tremendous | 117, 241 |
| abstract_inverted_index.GeoTrellis. | 180 |
| abstract_inverted_index.accelerated | 156 |
| abstract_inverted_index.computation | 105 |
| abstract_inverted_index.distributed | 63, 145, 262 |
| abstract_inverted_index.geo-encoded | 167 |
| abstract_inverted_index.geo-gridded | 153 |
| abstract_inverted_index.implemented | 203 |
| abstract_inverted_index.intensively | 115 |
| abstract_inverted_index.large-scale | 53, 70, 278 |
| abstract_inverted_index.maintaining | 249 |
| abstract_inverted_index.mosaicking, | 40 |
| abstract_inverted_index.observation | 7 |
| abstract_inverted_index.prefetching | 198, 264 |
| abstract_inverted_index.significant | 58 |
| abstract_inverted_index.traditional | 96, 301 |
| abstract_inverted_index.“messy” | 162 |
| abstract_inverted_index.Experimental | 287 |
| abstract_inverted_index.availability | 2 |
| abstract_inverted_index.concurrently | 204 |
| abstract_inverted_index.demonstrated | 290 |
| abstract_inverted_index.discouraging | 89 |
| abstract_inverted_index.geo-encoding | 177 |
| abstract_inverted_index.performance. | 90 |
| abstract_inverted_index.transferring | 243 |
| abstract_inverted_index.Spark-enabled | 144, 214 |
| abstract_inverted_index.environmental | 22 |
| abstract_inverted_index.implementing. | 305 |
| abstract_inverted_index.orchestration | 224 |
| abstract_inverted_index.significantly | 74 |
| abstract_inverted_index.space-filling | 175 |
| abstract_inverted_index.unprecedented | 1 |
| abstract_inverted_index.analysis-ready | 5 |
| abstract_inverted_index.multi-dimensional | 174 |
| abstract_inverted_index.temporal–spatial | 30 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100643820 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210137199, https://openalex.org/I4210165038 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.70191197 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |