In-Process Tool Condition Forecasting of Drilling CFRP/Ti Stacks Based on ResNet and LSTM Network Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app13031881
Tool condition forecasting (TCF) is a key technology for continuous drilling of CFRP/Ti stacks, as the tool wear is always rapid and severe, which may further induce unexpected drilling quality issues. However, for drilling CFRP/Ti stacks, the cutting spindle power and vibration signals change are complex, influenced by many factors due to the different materials properties. The TCF for drilling CFRP/Ti stacks remains challenging, as the sensitive features are difficult to extract, which decide the accuracy and robustness. Aiming to monitor and forecast tool wear of drilling CFRP/Ti stacks, an in-process TCF method based on residual neural network (ResNet) and long short-term memory (LSTM) network has been proposed in this paper. Using the cutting spindle power and vibration signals preprocessed by the proposed method, the LSTM network with the ResNet-based model integrated can forecast tool-wear values of the next drilling holes. A case study demonstrated the effectiveness of TCF, where the results using raw measured signals and preprocessed datasets are tested for comparison. The mean absolute error (MAE) using raw signals is 45.01 μm, which is 2.20 times bigger than that using preprocess signals. With the proposed method, the data preprocessing for drilling CFRP/Ti stacks can improve the tool-wear forecasting accuracy to MAE 20.43μm level, which meets the demand for online TCF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app13031881
- https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867
- OA Status
- gold
- Cited By
- 6
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318830480
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318830480Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app13031881Digital Object Identifier
- Title
-
In-Process Tool Condition Forecasting of Drilling CFRP/Ti Stacks Based on ResNet and LSTM NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-01Full publication date if available
- Authors
-
Zhenxi Jiang, Fuji Wang, Debiao Zeng, Shaowei Zhu, Rao FuList of authors in order
- Landing page
-
https://doi.org/10.3390/app13031881Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867Direct OA link when available
- Concepts
-
Drilling, Preprocessor, Tool wear, Robustness (evolution), Long short term memory, Artificial neural network, Computer science, Power (physics), Materials science, Artificial intelligence, Mechanical engineering, Engineering, Machining, Recurrent neural network, Quantum mechanics, Chemistry, Biochemistry, Gene, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318830480 |
|---|---|
| doi | https://doi.org/10.3390/app13031881 |
| ids.doi | https://doi.org/10.3390/app13031881 |
| ids.openalex | https://openalex.org/W4318830480 |
| fwci | 1.10706672 |
| type | article |
| title | In-Process Tool Condition Forecasting of Drilling CFRP/Ti Stacks Based on ResNet and LSTM Network |
| awards[0].id | https://openalex.org/G2366513291 |
| awards[0].funder_id | https://openalex.org/F4320329895 |
| awards[0].display_name | |
| awards[0].funder_award_id | XLYC1902014 |
| awards[0].funder_display_name | Liaoning Revitalization Talents Program |
| biblio.issue | 3 |
| biblio.volume | 13 |
| biblio.last_page | 1881 |
| biblio.first_page | 1881 |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T10834 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Welding Techniques and Residual Stresses |
| topics[2].id | https://openalex.org/T11451 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Machining and Optimization Techniques |
| funders[0].id | https://openalex.org/F4320329895 |
| funders[0].ror | |
| funders[0].display_name | Liaoning Revitalization Talents Program |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C25197100 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7565321922302246 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q890886 |
| concepts[0].display_name | Drilling |
| concepts[1].id | https://openalex.org/C34736171 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5945115089416504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[1].display_name | Preprocessor |
| concepts[2].id | https://openalex.org/C2776450708 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5728083848953247 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6008734 |
| concepts[2].display_name | Tool wear |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4976554214954376 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C133488467 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4750545024871826 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[4].display_name | Long short term memory |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4675660729408264 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4651407301425934 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C163258240 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41706812381744385 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[7].display_name | Power (physics) |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3444029688835144 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3174413740634918 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C78519656 |
| concepts[10].level | 1 |
| concepts[10].score | 0.23076990246772766 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[10].display_name | Mechanical engineering |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20938950777053833 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C523214423 |
| concepts[12].level | 2 |
| concepts[12].score | 0.20933231711387634 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192047 |
| concepts[12].display_name | Machining |
| concepts[13].id | https://openalex.org/C147168706 |
| concepts[13].level | 3 |
| concepts[13].score | 0.07126021385192871 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[13].display_name | Recurrent neural network |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/drilling |
| keywords[0].score | 0.7565321922302246 |
| keywords[0].display_name | Drilling |
| keywords[1].id | https://openalex.org/keywords/preprocessor |
| keywords[1].score | 0.5945115089416504 |
| keywords[1].display_name | Preprocessor |
| keywords[2].id | https://openalex.org/keywords/tool-wear |
| keywords[2].score | 0.5728083848953247 |
| keywords[2].display_name | Tool wear |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.4976554214954376 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[4].score | 0.4750545024871826 |
| keywords[4].display_name | Long short term memory |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4675660729408264 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4651407301425934 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/power |
| keywords[7].score | 0.41706812381744385 |
| keywords[7].display_name | Power (physics) |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.3444029688835144 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3174413740634918 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[10].score | 0.23076990246772766 |
| keywords[10].display_name | Mechanical engineering |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.20938950777053833 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/machining |
| keywords[12].score | 0.20933231711387634 |
| keywords[12].display_name | Machining |
| keywords[13].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[13].score | 0.07126021385192871 |
| keywords[13].display_name | Recurrent neural network |
| language | en |
| locations[0].id | doi:10.3390/app13031881 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app13031881 |
| locations[1].id | pmh:oai:doaj.org/article:5b5b69eadf62472e9993d0264648da2f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 3, p 1881 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/5b5b69eadf62472e9993d0264648da2f |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/13/3/1881/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app13031881 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010740346 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0878-5565 |
| authorships[0].author.display_name | Zhenxi Jiang |
| authorships[0].countries | CN, HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210094459 |
| authorships[0].affiliations[0].raw_affiliation_string | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I27357992 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| authorships[0].institutions[0].id | https://openalex.org/I27357992 |
| authorships[0].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian University of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I4210094459 |
| authorships[0].institutions[1].ror | https://ror.org/00gxm5663 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210094459 |
| authorships[0].institutions[1].country_code | HK |
| authorships[0].institutions[1].display_name | Craft Group (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhenxi Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China, Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| authorships[1].author.id | https://openalex.org/A5069970942 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9241-239X |
| authorships[1].author.display_name | Fuji Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| authorships[1].institutions[0].id | https://openalex.org/I27357992 |
| authorships[1].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fuji Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| authorships[2].author.id | https://openalex.org/A5014935120 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Debiao Zeng |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210094459 |
| authorships[2].affiliations[0].raw_affiliation_string | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210094459 |
| authorships[2].institutions[0].ror | https://ror.org/00gxm5663 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210094459 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Craft Group (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Debiao Zeng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China |
| authorships[3].author.id | https://openalex.org/A5103252880 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2224-7069 |
| authorships[3].author.display_name | Shaowei Zhu |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210094459 |
| authorships[3].affiliations[0].raw_affiliation_string | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210094459 |
| authorships[3].institutions[0].ror | https://ror.org/00gxm5663 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210094459 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Craft Group (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shaowei Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China |
| authorships[4].author.id | https://openalex.org/A5033187103 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1907-5833 |
| authorships[4].author.display_name | Rao Fu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| authorships[4].institutions[0].id | https://openalex.org/I27357992 |
| authorships[4].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dalian University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rao Fu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Liaoning Province, Dalian University of Technology, Dalian 116024, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | In-Process Tool Condition Forecasting of Drilling CFRP/Ti Stacks Based on ResNet and LSTM Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2382928216, https://openalex.org/W2386387936, https://openalex.org/W2384383430, https://openalex.org/W2783233264, https://openalex.org/W2018297885, https://openalex.org/W2314172987, https://openalex.org/W2098094171, https://openalex.org/W1597571772, https://openalex.org/W2541791370 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app13031881 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app13031881 |
| primary_location.id | doi:10.3390/app13031881 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/3/1881/pdf?version=1675221867 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app13031881 |
| publication_date | 2023-02-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2043335886, https://openalex.org/W2073851213, https://openalex.org/W1985796523, https://openalex.org/W3037998911, https://openalex.org/W3003767554, https://openalex.org/W2938021361, https://openalex.org/W2167218164, https://openalex.org/W6693361819, https://openalex.org/W2788276261, https://openalex.org/W2062431257, https://openalex.org/W2257429831, https://openalex.org/W1972056001, https://openalex.org/W955873199, https://openalex.org/W4250929268, https://openalex.org/W2518796799, https://openalex.org/W2810853631, https://openalex.org/W2810180393, https://openalex.org/W2743423608, https://openalex.org/W2793471602, https://openalex.org/W2321274876, https://openalex.org/W2021815137, https://openalex.org/W2185488195, https://openalex.org/W4288045586, https://openalex.org/W4313472418, https://openalex.org/W4308157892, https://openalex.org/W3206794538, https://openalex.org/W4291415053, https://openalex.org/W2474032404, https://openalex.org/W2568662015, https://openalex.org/W2810292802, https://openalex.org/W2964242156, https://openalex.org/W2967000986, https://openalex.org/W4308498142, https://openalex.org/W3147061871, https://openalex.org/W3183900226, https://openalex.org/W2958618010, https://openalex.org/W2962940008, https://openalex.org/W2270306384 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 141 |
| abstract_inverted_index.a | 5 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 14, 64 |
| abstract_inverted_index.by | 47, 120 |
| abstract_inverted_index.in | 108 |
| abstract_inverted_index.is | 4, 18, 171, 175 |
| abstract_inverted_index.of | 11, 85, 136, 147 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.to | 51, 70, 79, 201 |
| abstract_inverted_index.MAE | 202 |
| abstract_inverted_index.TCF | 57, 91 |
| abstract_inverted_index.The | 56, 163 |
| abstract_inverted_index.and | 21, 40, 76, 81, 99, 116, 156 |
| abstract_inverted_index.are | 44, 68, 159 |
| abstract_inverted_index.can | 132, 195 |
| abstract_inverted_index.due | 50 |
| abstract_inverted_index.for | 8, 32, 58, 161, 191, 209 |
| abstract_inverted_index.has | 105 |
| abstract_inverted_index.key | 6 |
| abstract_inverted_index.may | 24 |
| abstract_inverted_index.raw | 153, 169 |
| abstract_inverted_index.the | 15, 36, 52, 65, 74, 112, 121, 124, 128, 137, 145, 150, 185, 188, 197, 207 |
| abstract_inverted_index.2.20 | 176 |
| abstract_inverted_index.LSTM | 125 |
| abstract_inverted_index.TCF, | 148 |
| abstract_inverted_index.TCF. | 211 |
| abstract_inverted_index.Tool | 0 |
| abstract_inverted_index.With | 184 |
| abstract_inverted_index.been | 106 |
| abstract_inverted_index.case | 142 |
| abstract_inverted_index.data | 189 |
| abstract_inverted_index.long | 100 |
| abstract_inverted_index.many | 48 |
| abstract_inverted_index.mean | 164 |
| abstract_inverted_index.next | 138 |
| abstract_inverted_index.than | 179 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.this | 109 |
| abstract_inverted_index.tool | 16, 83 |
| abstract_inverted_index.wear | 17, 84 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.μm, | 173 |
| abstract_inverted_index.(MAE) | 167 |
| abstract_inverted_index.(TCF) | 3 |
| abstract_inverted_index.45.01 | 172 |
| abstract_inverted_index.Using | 111 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.error | 166 |
| abstract_inverted_index.meets | 206 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.power | 39, 115 |
| abstract_inverted_index.rapid | 20 |
| abstract_inverted_index.study | 143 |
| abstract_inverted_index.times | 177 |
| abstract_inverted_index.using | 152, 168, 181 |
| abstract_inverted_index.where | 149 |
| abstract_inverted_index.which | 23, 72, 174, 205 |
| abstract_inverted_index.(LSTM) | 103 |
| abstract_inverted_index.Aiming | 78 |
| abstract_inverted_index.always | 19 |
| abstract_inverted_index.bigger | 178 |
| abstract_inverted_index.change | 43 |
| abstract_inverted_index.decide | 73 |
| abstract_inverted_index.demand | 208 |
| abstract_inverted_index.holes. | 140 |
| abstract_inverted_index.induce | 26 |
| abstract_inverted_index.level, | 204 |
| abstract_inverted_index.memory | 102 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.neural | 96 |
| abstract_inverted_index.online | 210 |
| abstract_inverted_index.paper. | 110 |
| abstract_inverted_index.stacks | 61, 194 |
| abstract_inverted_index.tested | 160 |
| abstract_inverted_index.values | 135 |
| abstract_inverted_index.CFRP/Ti | 12, 34, 60, 87, 193 |
| abstract_inverted_index.cutting | 37, 113 |
| abstract_inverted_index.factors | 49 |
| abstract_inverted_index.further | 25 |
| abstract_inverted_index.improve | 196 |
| abstract_inverted_index.issues. | 30 |
| abstract_inverted_index.method, | 123, 187 |
| abstract_inverted_index.monitor | 80 |
| abstract_inverted_index.network | 97, 104, 126 |
| abstract_inverted_index.quality | 29 |
| abstract_inverted_index.remains | 62 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.severe, | 22 |
| abstract_inverted_index.signals | 42, 118, 155, 170 |
| abstract_inverted_index.spindle | 38, 114 |
| abstract_inverted_index.stacks, | 13, 35, 88 |
| abstract_inverted_index.(ResNet) | 98 |
| abstract_inverted_index.20.43μm | 203 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.absolute | 165 |
| abstract_inverted_index.accuracy | 75, 200 |
| abstract_inverted_index.complex, | 45 |
| abstract_inverted_index.datasets | 158 |
| abstract_inverted_index.drilling | 10, 28, 33, 59, 86, 139, 192 |
| abstract_inverted_index.extract, | 71 |
| abstract_inverted_index.features | 67 |
| abstract_inverted_index.forecast | 82, 133 |
| abstract_inverted_index.measured | 154 |
| abstract_inverted_index.proposed | 107, 122, 186 |
| abstract_inverted_index.residual | 95 |
| abstract_inverted_index.signals. | 183 |
| abstract_inverted_index.condition | 1 |
| abstract_inverted_index.different | 53 |
| abstract_inverted_index.difficult | 69 |
| abstract_inverted_index.materials | 54 |
| abstract_inverted_index.sensitive | 66 |
| abstract_inverted_index.tool-wear | 134, 198 |
| abstract_inverted_index.vibration | 41, 117 |
| abstract_inverted_index.continuous | 9 |
| abstract_inverted_index.in-process | 90 |
| abstract_inverted_index.influenced | 46 |
| abstract_inverted_index.integrated | 131 |
| abstract_inverted_index.preprocess | 182 |
| abstract_inverted_index.short-term | 101 |
| abstract_inverted_index.technology | 7 |
| abstract_inverted_index.unexpected | 27 |
| abstract_inverted_index.comparison. | 162 |
| abstract_inverted_index.forecasting | 2, 199 |
| abstract_inverted_index.properties. | 55 |
| abstract_inverted_index.robustness. | 77 |
| abstract_inverted_index.ResNet-based | 129 |
| abstract_inverted_index.challenging, | 63 |
| abstract_inverted_index.demonstrated | 144 |
| abstract_inverted_index.preprocessed | 119, 157 |
| abstract_inverted_index.effectiveness | 146 |
| abstract_inverted_index.preprocessing | 190 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5033187103 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I27357992 |
| citation_normalized_percentile.value | 0.69934613 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |