In Situ Synthesis of RMB6-TMB2 Composite Nanopowders via One-Step Solid-State Reduction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/nano15171341
· OA: W4413895066
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route for synthesizing RMB6-TMB2 composite nanopowders with homogeneous phase distribution using reduction reactions was proposed. The LaB6-ZrB2 composite nanopowders were synthesized in situ for the first time using sodium borohydride (NaBH4) as both a reducing agent and boron source, with lanthanum oxide (La2O3) and zirconium dioxide (ZrO2) serving as metal sources. The effects of the synthesis temperature on phase compositions and microstructure of the composites were systematically investigated. The LaB6-ZrB2 system with a eutectic weight ratio exhibited an accelerated reaction rate, achieving a complete reaction at 1000 °C, 300 °C lower than that of single-phase ZrB2 synthesis. The composite phases were uniformly distributed even at nanoscale. The composite powder displayed an average particle size of ~170 nm when synthesized at 1300 °C. With the benefit of the in situ synthesis method, LaB6-TiB2, CeB6-ZrB2, and CeB6-TiB2 composite powders were successfully synthesized. This process effectively addresses phase separation and contamination issues typically associated with traditional mixing methods, providing a scalable precursor for high-performance RMB6-TMB2 composites.