Incipient fault detection and isolation with Cauchy–Schwarz divergence: A probabilistic approach Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.jfranklin.2024.107114
To monitor the dynamics and non-stationarity inherent in industrial processes, we propose a novel incipient fault detection and isolation scheme grounded in a probabilistic perspective, using the Cauchy–Schwarz (CS) divergence. Our innovation lies in the utilization of marginal CS divergence for incipient fault detection and the conditional CS divergence for fault isolation. This approach neither require prior parametric assumptions about the underlying data distribution nor depend on historical fault data, while simultaneously providing explanatory diagnostics. Beyond this, we develop a change point detection-base diagnosis technique for practical engineering applications. This online process monitoring technique guarantees timely intervention to uphold process stability and safety. We demonstrate the compelling performance, higher detection rate and lower alarm rate, of the CS divergence over prevalent divergence-based approaches, such as Kullback–Leibler divergence, Wasserstein distance and Mahalanobis distance. We also illustrate the explanatory insights offered by conditional CS divergence in fault isolation on synthetic data, benchmarks of continuous stirred-tank reactor process and continuous stirred-tank heater process and even a real-world continuous catalytic reforming process. Code of this CS divergence based fault detection and isolation is available at https://github.com/Feiya-Lv/Incipient-Fault-Detection-and-Isolation-with-Cauchy--Schwarz-Divergence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jfranklin.2024.107114
- OA Status
- hybrid
- Cited By
- 4
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401305378
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401305378Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jfranklin.2024.107114Digital Object Identifier
- Title
-
Incipient fault detection and isolation with Cauchy–Schwarz divergence: A probabilistic approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-03Full publication date if available
- Authors
-
Feiya Lv, Shujian Yu, Huawei Ye, Jinsong Zhao, Chenglin WenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jfranklin.2024.107114Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jfranklin.2024.107114Direct OA link when available
- Concepts
-
Divergence (linguistics), Fault detection and isolation, Mahalanobis distance, Probabilistic logic, Computer science, Kullback–Leibler divergence, Isolation (microbiology), Cauchy distribution, Parametric statistics, Data mining, Mathematics, Artificial intelligence, Statistics, Biology, Microbiology, Philosophy, Linguistics, ActuatorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401305378 |
|---|---|
| doi | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| ids.doi | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| ids.openalex | https://openalex.org/W4401305378 |
| fwci | 2.54483474 |
| type | article |
| title | Incipient fault detection and isolation with Cauchy–Schwarz divergence: A probabilistic approach |
| awards[0].id | https://openalex.org/G549140755 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U213207 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G285976781 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62125307 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G6936417442 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62003004 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 15 |
| biblio.volume | 361 |
| biblio.last_page | 107114 |
| biblio.first_page | 107114 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11443 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9815999865531921 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Advanced Statistical Process Monitoring |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9491999745368958 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2700 |
| apc_list.currency | USD |
| apc_list.value_usd | 2700 |
| apc_paid.value | 2700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2700 |
| concepts[0].id | https://openalex.org/C207390915 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7738080024719238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[0].display_name | Divergence (linguistics) |
| concepts[1].id | https://openalex.org/C152745839 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7456017136573792 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5438153 |
| concepts[1].display_name | Fault detection and isolation |
| concepts[2].id | https://openalex.org/C1921717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5630870461463928 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1334846 |
| concepts[2].display_name | Mahalanobis distance |
| concepts[3].id | https://openalex.org/C49937458 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48244768381118774 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[3].display_name | Probabilistic logic |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4763222634792328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C171752962 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45157355070114136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q255166 |
| concepts[5].display_name | Kullback–Leibler divergence |
| concepts[6].id | https://openalex.org/C2775941552 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45093947649002075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25212305 |
| concepts[6].display_name | Isolation (microbiology) |
| concepts[7].id | https://openalex.org/C49344536 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44969069957733154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q726441 |
| concepts[7].display_name | Cauchy distribution |
| concepts[8].id | https://openalex.org/C117251300 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4359854757785797 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[8].display_name | Parametric statistics |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33509010076522827 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3161422312259674 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2718002498149872 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17661002278327942 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C89423630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7193 |
| concepts[14].display_name | Microbiology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C172707124 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q423488 |
| concepts[17].display_name | Actuator |
| keywords[0].id | https://openalex.org/keywords/divergence |
| keywords[0].score | 0.7738080024719238 |
| keywords[0].display_name | Divergence (linguistics) |
| keywords[1].id | https://openalex.org/keywords/fault-detection-and-isolation |
| keywords[1].score | 0.7456017136573792 |
| keywords[1].display_name | Fault detection and isolation |
| keywords[2].id | https://openalex.org/keywords/mahalanobis-distance |
| keywords[2].score | 0.5630870461463928 |
| keywords[2].display_name | Mahalanobis distance |
| keywords[3].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[3].score | 0.48244768381118774 |
| keywords[3].display_name | Probabilistic logic |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4763222634792328 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/kullback–leibler-divergence |
| keywords[5].score | 0.45157355070114136 |
| keywords[5].display_name | Kullback–Leibler divergence |
| keywords[6].id | https://openalex.org/keywords/isolation |
| keywords[6].score | 0.45093947649002075 |
| keywords[6].display_name | Isolation (microbiology) |
| keywords[7].id | https://openalex.org/keywords/cauchy-distribution |
| keywords[7].score | 0.44969069957733154 |
| keywords[7].display_name | Cauchy distribution |
| keywords[8].id | https://openalex.org/keywords/parametric-statistics |
| keywords[8].score | 0.4359854757785797 |
| keywords[8].display_name | Parametric statistics |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.33509010076522827 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3161422312259674 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2718002498149872 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.17661002278327942 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.jfranklin.2024.107114 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S183498172 |
| locations[0].source.issn | 0016-0032, 1879-2693 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0016-0032 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the Franklin Institute |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the Franklin Institute |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| locations[1].id | pmh:oai:research.vu.nl:openaire/65461b92-6fab-477b-8f8a-2fee2608c47c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401107 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | VU Research Portal |
| locations[1].source.host_organization | https://openalex.org/I865915315 |
| locations[1].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[1].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Lv, F, Yu, S, Ye, H, Zhao, J & Wen, C 2024, 'Incipient fault detection and isolation with Cauchy–Schwarz divergence : A probabilistic approach', Journal of the Franklin Institute, vol. 361, no. 15, 107114, pp. 1-23. https://doi.org/10.1016/j.jfranklin.2024.107114 |
| locations[1].landing_page_url | https://research.vu.nl/en/publications/65461b92-6fab-477b-8f8a-2fee2608c47c |
| locations[2].id | pmh:oai:research.vu.nl:publications/65461b92-6fab-477b-8f8a-2fee2608c47c |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401107 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | VU Research Portal |
| locations[2].source.host_organization | https://openalex.org/I865915315 |
| locations[2].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[2].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Lv, F, Yu, S, Ye, H, Zhao, J & Wen, C 2024, 'Incipient fault detection and isolation with Cauchy–Schwarz divergence : A probabilistic approach', Journal of the Franklin Institute, vol. 361, no. 15, 107114, pp. 1-23. https://doi.org/10.1016/j.jfranklin.2024.107114 |
| locations[2].landing_page_url | https://hdl.handle.net/1871.1/65461b92-6fab-477b-8f8a-2fee2608c47c |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080782352 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6874-6285 |
| authorships[0].author.display_name | Feiya Lv |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feiya Lv |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
| authorships[1].author.id | https://openalex.org/A5041358503 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[1].author.display_name | Shujian Yu |
| authorships[1].countries | NL, NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I865915315 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I78037679 |
| authorships[1].affiliations[1].raw_affiliation_string | Machine Learning Group, UiT - The Arctic University of Norway, 9037 Tromsø, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I865915315 |
| authorships[1].institutions[0].ror | https://ror.org/008xxew50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I865915315 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Vrije Universiteit Amsterdam |
| authorships[1].institutions[1].id | https://openalex.org/I78037679 |
| authorships[1].institutions[1].ror | https://ror.org/00wge5k78 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I78037679 |
| authorships[1].institutions[1].country_code | NO |
| authorships[1].institutions[1].display_name | UiT The Arctic University of Norway |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shujian Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands, Machine Learning Group, UiT - The Arctic University of Norway, 9037 Tromsø, Norway |
| authorships[2].author.id | https://openalex.org/A5055236823 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Huawei Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I106994412, https://openalex.org/I134626604 |
| authorships[2].affiliations[0].raw_affiliation_string | Sinopec Jiujiang Company, Jiujiang, 332004, China |
| authorships[2].institutions[0].id | https://openalex.org/I134626604 |
| authorships[2].institutions[0].ror | https://ror.org/0066vpg85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I134626604 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Jiujiang University |
| authorships[2].institutions[1].id | https://openalex.org/I106994412 |
| authorships[2].institutions[1].ror | https://ror.org/0161q6d74 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I106994412 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Sinopec (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huawei Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Sinopec Jiujiang Company, Jiujiang, 332004, China |
| authorships[3].author.id | https://openalex.org/A5100398395 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0572-8431 |
| authorships[3].author.display_name | Jinsong Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinsong Zhao |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
| authorships[4].author.id | https://openalex.org/A5086718724 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2471-2849 |
| authorships[4].author.display_name | Chenglin Wen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210128140 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210128140 |
| authorships[4].institutions[0].ror | https://ror.org/030ffke25 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210128140 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangdong University of Petrochemical Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chenglin Wen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Incipient fault detection and isolation with Cauchy–Schwarz divergence: A probabilistic approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W2927068219, https://openalex.org/W2105321464, https://openalex.org/W2887774187, https://openalex.org/W3094086031, https://openalex.org/W2388220555, https://openalex.org/W3048739257, https://openalex.org/W1665563134, https://openalex.org/W2963604926, https://openalex.org/W1616881371, https://openalex.org/W1520875569 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.jfranklin.2024.107114 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S183498172 |
| best_oa_location.source.issn | 0016-0032, 1879-2693 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0016-0032 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the Franklin Institute |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the Franklin Institute |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| primary_location.id | doi:10.1016/j.jfranklin.2024.107114 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S183498172 |
| primary_location.source.issn | 0016-0032, 1879-2693 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0016-0032 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the Franklin Institute |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the Franklin Institute |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jfranklin.2024.107114 |
| publication_date | 2024-08-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2158958729, https://openalex.org/W4235457221, https://openalex.org/W2599795618, https://openalex.org/W4285097412, https://openalex.org/W2080008918, https://openalex.org/W3109469345, https://openalex.org/W3199321016, https://openalex.org/W6762195355, https://openalex.org/W2993953869, https://openalex.org/W4281750808, https://openalex.org/W3041173183, https://openalex.org/W3094086031, https://openalex.org/W3040478813, https://openalex.org/W6781870204, https://openalex.org/W2149803014, https://openalex.org/W2897268107, https://openalex.org/W3192472660, https://openalex.org/W3019898994, https://openalex.org/W3098015864, https://openalex.org/W4385506864, https://openalex.org/W2155844971, https://openalex.org/W3100019633, https://openalex.org/W3157456168, https://openalex.org/W2002268936, https://openalex.org/W4205093092, https://openalex.org/W2678047622, https://openalex.org/W4281873530, https://openalex.org/W6785817137, https://openalex.org/W1804536132, https://openalex.org/W2031774932, https://openalex.org/W6679880043, https://openalex.org/W3080624533, https://openalex.org/W3131773838, https://openalex.org/W4253930725, https://openalex.org/W2765099665, https://openalex.org/W2789634333, https://openalex.org/W2906077204, https://openalex.org/W2608273225, https://openalex.org/W3210080612, https://openalex.org/W4376866412, https://openalex.org/W3031080090, https://openalex.org/W2029747079, https://openalex.org/W2954948446, https://openalex.org/W4323926444, https://openalex.org/W2071513844, https://openalex.org/W2938699935, https://openalex.org/W108857541, https://openalex.org/W4249625715, https://openalex.org/W2136251587, https://openalex.org/W4287077544, https://openalex.org/W4317940133, https://openalex.org/W2399703712 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 12, 22, 79, 162 |
| abstract_inverted_index.CS | 38, 47, 117, 141, 171 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.We | 103, 132 |
| abstract_inverted_index.as | 124 |
| abstract_inverted_index.at | 180 |
| abstract_inverted_index.by | 139 |
| abstract_inverted_index.in | 7, 21, 33, 143 |
| abstract_inverted_index.is | 178 |
| abstract_inverted_index.of | 36, 115, 150, 169 |
| abstract_inverted_index.on | 66, 146 |
| abstract_inverted_index.to | 97 |
| abstract_inverted_index.we | 10, 77 |
| abstract_inverted_index.Our | 30 |
| abstract_inverted_index.and | 4, 17, 44, 101, 111, 129, 155, 160, 176 |
| abstract_inverted_index.for | 40, 49, 85 |
| abstract_inverted_index.nor | 64 |
| abstract_inverted_index.the | 2, 26, 34, 45, 60, 105, 116, 135 |
| abstract_inverted_index.(CS) | 28 |
| abstract_inverted_index.Code | 168 |
| abstract_inverted_index.This | 52, 89 |
| abstract_inverted_index.also | 133 |
| abstract_inverted_index.data | 62 |
| abstract_inverted_index.even | 161 |
| abstract_inverted_index.lies | 32 |
| abstract_inverted_index.over | 119 |
| abstract_inverted_index.rate | 110 |
| abstract_inverted_index.such | 123 |
| abstract_inverted_index.this | 170 |
| abstract_inverted_index.about | 59 |
| abstract_inverted_index.alarm | 113 |
| abstract_inverted_index.based | 173 |
| abstract_inverted_index.data, | 69, 148 |
| abstract_inverted_index.fault | 15, 42, 50, 68, 144, 174 |
| abstract_inverted_index.lower | 112 |
| abstract_inverted_index.novel | 13 |
| abstract_inverted_index.point | 81 |
| abstract_inverted_index.prior | 56 |
| abstract_inverted_index.rate, | 114 |
| abstract_inverted_index.this, | 76 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.while | 70 |
| abstract_inverted_index.Beyond | 75 |
| abstract_inverted_index.change | 80 |
| abstract_inverted_index.depend | 65 |
| abstract_inverted_index.heater | 158 |
| abstract_inverted_index.higher | 108 |
| abstract_inverted_index.online | 90 |
| abstract_inverted_index.scheme | 19 |
| abstract_inverted_index.timely | 95 |
| abstract_inverted_index.uphold | 98 |
| abstract_inverted_index.develop | 78 |
| abstract_inverted_index.monitor | 1 |
| abstract_inverted_index.neither | 54 |
| abstract_inverted_index.offered | 138 |
| abstract_inverted_index.process | 91, 99, 154, 159 |
| abstract_inverted_index.propose | 11 |
| abstract_inverted_index.reactor | 153 |
| abstract_inverted_index.require | 55 |
| abstract_inverted_index.safety. | 102 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.distance | 128 |
| abstract_inverted_index.dynamics | 3 |
| abstract_inverted_index.grounded | 20 |
| abstract_inverted_index.inherent | 6 |
| abstract_inverted_index.insights | 137 |
| abstract_inverted_index.marginal | 37 |
| abstract_inverted_index.process. | 167 |
| abstract_inverted_index.available | 179 |
| abstract_inverted_index.catalytic | 165 |
| abstract_inverted_index.detection | 16, 43, 109, 175 |
| abstract_inverted_index.diagnosis | 83 |
| abstract_inverted_index.distance. | 131 |
| abstract_inverted_index.incipient | 14, 41 |
| abstract_inverted_index.isolation | 18, 145, 177 |
| abstract_inverted_index.practical | 86 |
| abstract_inverted_index.prevalent | 120 |
| abstract_inverted_index.providing | 72 |
| abstract_inverted_index.reforming | 166 |
| abstract_inverted_index.stability | 100 |
| abstract_inverted_index.synthetic | 147 |
| abstract_inverted_index.technique | 84, 93 |
| abstract_inverted_index.benchmarks | 149 |
| abstract_inverted_index.compelling | 106 |
| abstract_inverted_index.continuous | 151, 156, 164 |
| abstract_inverted_index.divergence | 39, 48, 118, 142, 172 |
| abstract_inverted_index.guarantees | 94 |
| abstract_inverted_index.historical | 67 |
| abstract_inverted_index.illustrate | 134 |
| abstract_inverted_index.industrial | 8 |
| abstract_inverted_index.innovation | 31 |
| abstract_inverted_index.isolation. | 51 |
| abstract_inverted_index.monitoring | 92 |
| abstract_inverted_index.parametric | 57 |
| abstract_inverted_index.processes, | 9 |
| abstract_inverted_index.real-world | 163 |
| abstract_inverted_index.underlying | 61 |
| abstract_inverted_index.Mahalanobis | 130 |
| abstract_inverted_index.Wasserstein | 127 |
| abstract_inverted_index.approaches, | 122 |
| abstract_inverted_index.assumptions | 58 |
| abstract_inverted_index.conditional | 46, 140 |
| abstract_inverted_index.demonstrate | 104 |
| abstract_inverted_index.divergence, | 126 |
| abstract_inverted_index.divergence. | 29 |
| abstract_inverted_index.engineering | 87 |
| abstract_inverted_index.explanatory | 73, 136 |
| abstract_inverted_index.utilization | 35 |
| abstract_inverted_index.diagnostics. | 74 |
| abstract_inverted_index.distribution | 63 |
| abstract_inverted_index.intervention | 96 |
| abstract_inverted_index.performance, | 107 |
| abstract_inverted_index.perspective, | 24 |
| abstract_inverted_index.stirred-tank | 152, 157 |
| abstract_inverted_index.applications. | 88 |
| abstract_inverted_index.probabilistic | 23 |
| abstract_inverted_index.detection-base | 82 |
| abstract_inverted_index.simultaneously | 71 |
| abstract_inverted_index.Cauchy–Schwarz | 27 |
| abstract_inverted_index.divergence-based | 121 |
| abstract_inverted_index.non-stationarity | 5 |
| abstract_inverted_index.Kullback–Leibler | 125 |
| abstract_inverted_index.https://github.com/Feiya-Lv/Incipient-Fault-Detection-and-Isolation-with-Cauchy--Schwarz-Divergence. | 181 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100398395 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I99065089 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.85244196 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |