Incorporating longitudinal variability in prediction models: A comparison of machine learning and logistic regression in a cohort study with long follow-up Article Swipe
Lichelle Groot
,
Jos W. R. Twisk
,
Almar A. L. Kok
,
Martijn W. Heymans
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.annepidem.2025.07.060
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.annepidem.2025.07.060
Machine Learning methods did not outperform logistic regression. Nonetheless, incorporating variability in longitudinal predictors enhances prediction, especially with expected changes in predictors, e.g., ageing populations.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.annepidem.2025.07.060
- OA Status
- hybrid
- Cited By
- 1
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412658528
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412658528Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.annepidem.2025.07.060Digital Object Identifier
- Title
-
Incorporating longitudinal variability in prediction models: A comparison of machine learning and logistic regression in a cohort study with long follow-upWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-26Full publication date if available
- Authors
-
Lichelle Groot, Jos W. R. Twisk, Almar A. L. Kok, Martijn W. HeymansList of authors in order
- Landing page
-
https://doi.org/10.1016/j.annepidem.2025.07.060Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.annepidem.2025.07.060Direct OA link when available
- Concepts
-
Medicine, Logistic regression, Regression, Cohort, Longitudinal study, Cohort study, Regression analysis, Machine learning, Statistics, Artificial intelligence, Internal medicine, Pathology, Computer science, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412658528 |
|---|---|
| doi | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| ids.doi | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40721037 |
| ids.openalex | https://openalex.org/W4412658528 |
| fwci | 6.27620984 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016015 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Logistic Models |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D008137 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Longitudinal Studies |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000368 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Aged |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008875 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Middle Aged |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005500 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Follow-Up Studies |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D003863 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | Depression |
| mesh[10].qualifier_ui | Q000175 |
| mesh[10].descriptor_ui | D003863 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | diagnosis |
| mesh[10].descriptor_name | Depression |
| mesh[11].qualifier_ui | Q000453 |
| mesh[11].descriptor_ui | D009426 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | epidemiology |
| mesh[11].descriptor_name | Netherlands |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D011237 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Predictive Value of Tests |
| type | article |
| title | Incorporating longitudinal variability in prediction models: A comparison of machine learning and logistic regression in a cohort study with long follow-up |
| biblio.issue | |
| biblio.volume | 110 |
| biblio.last_page | 65 |
| biblio.first_page | 51 |
| topics[0].id | https://openalex.org/T13283 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Mental Health Research Topics |
| topics[1].id | https://openalex.org/T14393 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9860000014305115 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Health, Environment, Cognitive Aging |
| topics[2].id | https://openalex.org/T10235 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9596999883651733 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3306 |
| topics[2].subfield.display_name | Health |
| topics[2].display_name | Health disparities and outcomes |
| is_xpac | False |
| apc_list.value | 3660 |
| apc_list.currency | USD |
| apc_list.value_usd | 3660 |
| apc_paid.value | 3660 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3660 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.900017499923706 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8441528677940369 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C83546350 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5734556317329407 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[2].display_name | Regression |
| concepts[3].id | https://openalex.org/C72563966 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5530236959457397 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[3].display_name | Cohort |
| concepts[4].id | https://openalex.org/C2777895361 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4728334844112396 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1758614 |
| concepts[4].display_name | Longitudinal study |
| concepts[5].id | https://openalex.org/C201903717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46218690276145935 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1778788 |
| concepts[5].display_name | Cohort study |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4202617108821869 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3997816741466522 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3807697296142578 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37867090106010437 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14334046840667725 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C142724271 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09116178750991821 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[11].display_name | Pathology |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.900017499923706 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.8441528677940369 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/regression |
| keywords[2].score | 0.5734556317329407 |
| keywords[2].display_name | Regression |
| keywords[3].id | https://openalex.org/keywords/cohort |
| keywords[3].score | 0.5530236959457397 |
| keywords[3].display_name | Cohort |
| keywords[4].id | https://openalex.org/keywords/longitudinal-study |
| keywords[4].score | 0.4728334844112396 |
| keywords[4].display_name | Longitudinal study |
| keywords[5].id | https://openalex.org/keywords/cohort-study |
| keywords[5].score | 0.46218690276145935 |
| keywords[5].display_name | Cohort study |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.4202617108821869 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3997816741466522 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3807697296142578 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.37867090106010437 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.14334046840667725 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/pathology |
| keywords[11].score | 0.09116178750991821 |
| keywords[11].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1016/j.annepidem.2025.07.060 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S40844199 |
| locations[0].source.issn | 1047-2797, 1873-2585 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1047-2797 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Annals of Epidemiology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Annals of Epidemiology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| locations[1].id | pmid:40721037 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Annals of epidemiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40721037 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5057182324 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3333-2023 |
| authorships[0].author.display_name | Lichelle Groot |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I911458345 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. Electronic address: [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I911458345 |
| authorships[0].institutions[0].ror | https://ror.org/00q6h8f30 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210151833, https://openalex.org/I911458345 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Amsterdam UMC Location Vrije Universiteit Amsterdam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | L M de Groot |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. Electronic address: [email protected]. |
| authorships[1].author.id | https://openalex.org/A5048711005 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9617-1020 |
| authorships[1].author.display_name | Jos W. R. Twisk |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I911458345 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. |
| authorships[1].institutions[0].id | https://openalex.org/I911458345 |
| authorships[1].institutions[0].ror | https://ror.org/00q6h8f30 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210151833, https://openalex.org/I911458345 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Amsterdam UMC Location Vrije Universiteit Amsterdam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | J W R Twisk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. |
| authorships[2].author.id | https://openalex.org/A5015731580 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6398-2484 |
| authorships[2].author.display_name | Almar A. L. Kok |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210148356, https://openalex.org/I911458345 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life program, Amsterdam, the Netherlands. |
| authorships[2].institutions[0].id | https://openalex.org/I911458345 |
| authorships[2].institutions[0].ror | https://ror.org/00q6h8f30 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210151833, https://openalex.org/I911458345 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Amsterdam UMC Location Vrije Universiteit Amsterdam |
| authorships[2].institutions[1].id | https://openalex.org/I4210148356 |
| authorships[2].institutions[1].ror | https://ror.org/04gbbq803 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210088893, https://openalex.org/I4210148356 |
| authorships[2].institutions[1].country_code | NL |
| authorships[2].institutions[1].display_name | GGD Amsterdam |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A A L Kok |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life program, Amsterdam, the Netherlands. |
| authorships[3].author.id | https://openalex.org/A5010287896 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3889-0921 |
| authorships[3].author.display_name | Martijn W. Heymans |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I911458345 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. |
| authorships[3].institutions[0].id | https://openalex.org/I911458345 |
| authorships[3].institutions[0].ror | https://ror.org/00q6h8f30 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210151833, https://openalex.org/I911458345 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Amsterdam UMC Location Vrije Universiteit Amsterdam |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | M W Heymans |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, the Netherlands; Amsterdam Public Health, Methodology program, Amsterdam, the Netherlands. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Incorporating longitudinal variability in prediction models: A comparison of machine learning and logistic regression in a cohort study with long follow-up |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13283 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Mental Health Research Topics |
| related_works | https://openalex.org/W3211735916, https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W1969346022, https://openalex.org/W2034959125 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.annepidem.2025.07.060 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S40844199 |
| best_oa_location.source.issn | 1047-2797, 1873-2585 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1047-2797 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Annals of Epidemiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Annals of Epidemiology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| primary_location.id | doi:10.1016/j.annepidem.2025.07.060 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S40844199 |
| primary_location.source.issn | 1047-2797, 1873-2585 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1047-2797 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Annals of Epidemiology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Annals of Epidemiology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.annepidem.2025.07.060 |
| publication_date | 2025-07-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3149054887, https://openalex.org/W2019694480, https://openalex.org/W2533691405, https://openalex.org/W1998392635, https://openalex.org/W2611236118, https://openalex.org/W2395172628, https://openalex.org/W2802782110, https://openalex.org/W3021818026, https://openalex.org/W2981367039, https://openalex.org/W2969754783, https://openalex.org/W4310600662, https://openalex.org/W4317388187, https://openalex.org/W4220665572, https://openalex.org/W4321366453, https://openalex.org/W2606105183, https://openalex.org/W2115033264, https://openalex.org/W4283155638, https://openalex.org/W2913997948, https://openalex.org/W6794192535, https://openalex.org/W6804678892, https://openalex.org/W2135046866, https://openalex.org/W6723835939, https://openalex.org/W6864959068, https://openalex.org/W2962937844, https://openalex.org/W2112778345, https://openalex.org/W2093505519, https://openalex.org/W2098307144, https://openalex.org/W4317212040, https://openalex.org/W2747576011, https://openalex.org/W4392782682, https://openalex.org/W2126508852, https://openalex.org/W4313280520, https://openalex.org/W4360600067, https://openalex.org/W2550172236, https://openalex.org/W3118182420, https://openalex.org/W2171661265, https://openalex.org/W2775691173, https://openalex.org/W2796024623, https://openalex.org/W2126340541, https://openalex.org/W1985168785, https://openalex.org/W2549473443, https://openalex.org/W6659742454, https://openalex.org/W2145656642, https://openalex.org/W2718071750, https://openalex.org/W4382051736, https://openalex.org/W2120851774, https://openalex.org/W2160810830, https://openalex.org/W2758198687, https://openalex.org/W3105112072, https://openalex.org/W3140880252, https://openalex.org/W1994682257, https://openalex.org/W6610017368, https://openalex.org/W4294541781, https://openalex.org/W2810511505, https://openalex.org/W2996480032, https://openalex.org/W2108514834, https://openalex.org/W2119168155, https://openalex.org/W2334028018, https://openalex.org/W4399555588, https://openalex.org/W4399271987, https://openalex.org/W4376131992, https://openalex.org/W2498119267, https://openalex.org/W2036870243, https://openalex.org/W4394908947, https://openalex.org/W4220947948, https://openalex.org/W2024623357, https://openalex.org/W4200202177, https://openalex.org/W273955616, https://openalex.org/W3214880663, https://openalex.org/W2496911238 |
| referenced_works_count | 70 |
| abstract_inverted_index.in | 11, 20 |
| abstract_inverted_index.did | 3 |
| abstract_inverted_index.not | 4 |
| abstract_inverted_index.with | 17 |
| abstract_inverted_index.e.g., | 22 |
| abstract_inverted_index.ageing | 23 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.changes | 19 |
| abstract_inverted_index.methods | 2 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.enhances | 14 |
| abstract_inverted_index.expected | 18 |
| abstract_inverted_index.logistic | 6 |
| abstract_inverted_index.especially | 16 |
| abstract_inverted_index.outperform | 5 |
| abstract_inverted_index.predictors | 13 |
| abstract_inverted_index.prediction, | 15 |
| abstract_inverted_index.predictors, | 21 |
| abstract_inverted_index.regression. | 7 |
| abstract_inverted_index.variability | 10 |
| abstract_inverted_index.Nonetheless, | 8 |
| abstract_inverted_index.longitudinal | 12 |
| abstract_inverted_index.populations. | 24 |
| abstract_inverted_index.incorporating | 9 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.92239268 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |