Incorporating Siamese Network Structure into Graph Neural Network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2171/1/012023
Siamese network plays an important role in many artificial intelligence domains, but there requires more exploration of applying Siamese structure to graph neural network. This paper proposes a novel framework that incorporates Siamese network structure into Graph Neural Network (Siam-GNN). We use DropEdge as graph augmentation technique to generate new graphs. Besides, the strategy of constructing Siamese network’s paired inputs is also studied in our work. Notably, stopping gradient backpropagation one side in Siam-GNN is an important factor affecting the performance of model. We equip some graph neural networks with Siamese structure and evaluate these Siam-GNNs on several standard semi-supervised node classification datasets and achieve surprising improvement on almost every original graph neural network.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2171/1/012023
- https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4207007961
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4207007961Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2171/1/012023Digital Object Identifier
- Title
-
Incorporating Siamese Network Structure into Graph Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Yinan Zhang, Wenyu ChenList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2171/1/012023Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdfDirect OA link when available
- Concepts
-
Computer science, Artificial neural network, Graph, Backpropagation, Artificial intelligence, Network structure, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4207007961 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2171/1/012023 |
| ids.doi | https://doi.org/10.1088/1742-6596/2171/1/012023 |
| ids.openalex | https://openalex.org/W4207007961 |
| fwci | 0.39159764 |
| type | article |
| title | Incorporating Siamese Network Structure into Graph Neural Network |
| biblio.issue | 1 |
| biblio.volume | 2171 |
| biblio.last_page | 012023 |
| biblio.first_page | 012023 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9886999726295471 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9854999780654907 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6752169132232666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6341696977615356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5983200073242188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C155032097 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5550553798675537 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[3].display_name | Backpropagation |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5341694951057434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2988224531 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4298829734325409 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q20830730 |
| concepts[5].display_name | Network structure |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36538371443748474 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6752169132232666 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6341696977615356 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.5983200073242188 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/backpropagation |
| keywords[3].score | 0.5550553798675537 |
| keywords[3].display_name | Backpropagation |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5341694951057434 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/network-structure |
| keywords[5].score | 0.4298829734325409 |
| keywords[5].display_name | Network structure |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.36538371443748474 |
| keywords[6].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2171/1/012023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2171/1/012023 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100426662 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0357-3926 |
| authorships[0].author.display_name | Yinan Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610000 China |
| authorships[0].institutions[0].id | https://openalex.org/I150229711 |
| authorships[0].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yinan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610000 China |
| authorships[1].author.id | https://openalex.org/A5100687323 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[1].author.display_name | Wenyu Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610000 China |
| authorships[1].institutions[0].id | https://openalex.org/I150229711 |
| authorships[1].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wenyu Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610000 China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Incorporating Siamese Network Structure into Graph Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2894173309, https://openalex.org/W4206400463, https://openalex.org/W2157746493, https://openalex.org/W2792697259, https://openalex.org/W1495379181, https://openalex.org/W637433680, https://openalex.org/W2371065793, https://openalex.org/W2080531293, https://openalex.org/W2121610565, https://openalex.org/W2598000333 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2171/1/012023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2171/1/012023 |
| primary_location.id | doi:10.1088/1742-6596/2171/1/012023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/1742-6596/2171/1/012023/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2171/1/012023 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2171590421, https://openalex.org/W3163661071, https://openalex.org/W3156636935, https://openalex.org/W6771932116, https://openalex.org/W6786614245, https://openalex.org/W2116341502, https://openalex.org/W6796768152, https://openalex.org/W6726873649, https://openalex.org/W6799825752, https://openalex.org/W6745584861, https://openalex.org/W2153959628, https://openalex.org/W2768308213, https://openalex.org/W2964015378, https://openalex.org/W4297733535, https://openalex.org/W2996268457, https://openalex.org/W3169622372, https://openalex.org/W3171007011, https://openalex.org/W3187071356 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 28 |
| abstract_inverted_index.We | 41, 84 |
| abstract_inverted_index.an | 4, 76 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.in | 7, 64, 73 |
| abstract_inverted_index.is | 61, 75 |
| abstract_inverted_index.of | 17, 55, 82 |
| abstract_inverted_index.on | 97, 108 |
| abstract_inverted_index.to | 21, 48 |
| abstract_inverted_index.and | 93, 104 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.new | 50 |
| abstract_inverted_index.one | 71 |
| abstract_inverted_index.our | 65 |
| abstract_inverted_index.the | 53, 80 |
| abstract_inverted_index.use | 42 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.also | 62 |
| abstract_inverted_index.into | 36 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.more | 15 |
| abstract_inverted_index.node | 101 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.side | 72 |
| abstract_inverted_index.some | 86 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.Graph | 37 |
| abstract_inverted_index.equip | 85 |
| abstract_inverted_index.every | 110 |
| abstract_inverted_index.graph | 22, 45, 87, 112 |
| abstract_inverted_index.novel | 29 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.there | 13 |
| abstract_inverted_index.these | 95 |
| abstract_inverted_index.work. | 66 |
| abstract_inverted_index.Neural | 38 |
| abstract_inverted_index.almost | 109 |
| abstract_inverted_index.factor | 78 |
| abstract_inverted_index.inputs | 60 |
| abstract_inverted_index.model. | 83 |
| abstract_inverted_index.neural | 23, 88, 113 |
| abstract_inverted_index.paired | 59 |
| abstract_inverted_index.Network | 39 |
| abstract_inverted_index.Siamese | 1, 19, 33, 57, 91 |
| abstract_inverted_index.achieve | 105 |
| abstract_inverted_index.graphs. | 51 |
| abstract_inverted_index.network | 2, 34 |
| abstract_inverted_index.several | 98 |
| abstract_inverted_index.studied | 63 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Besides, | 52 |
| abstract_inverted_index.DropEdge | 43 |
| abstract_inverted_index.Notably, | 67 |
| abstract_inverted_index.Siam-GNN | 74 |
| abstract_inverted_index.applying | 18 |
| abstract_inverted_index.datasets | 103 |
| abstract_inverted_index.domains, | 11 |
| abstract_inverted_index.evaluate | 94 |
| abstract_inverted_index.generate | 49 |
| abstract_inverted_index.gradient | 69 |
| abstract_inverted_index.network. | 24, 114 |
| abstract_inverted_index.networks | 89 |
| abstract_inverted_index.original | 111 |
| abstract_inverted_index.proposes | 27 |
| abstract_inverted_index.requires | 14 |
| abstract_inverted_index.standard | 99 |
| abstract_inverted_index.stopping | 68 |
| abstract_inverted_index.strategy | 54 |
| abstract_inverted_index.Siam-GNNs | 96 |
| abstract_inverted_index.affecting | 79 |
| abstract_inverted_index.framework | 30 |
| abstract_inverted_index.important | 5, 77 |
| abstract_inverted_index.structure | 20, 35, 92 |
| abstract_inverted_index.technique | 47 |
| abstract_inverted_index.artificial | 9 |
| abstract_inverted_index.surprising | 106 |
| abstract_inverted_index.(Siam-GNN). | 40 |
| abstract_inverted_index.exploration | 16 |
| abstract_inverted_index.improvement | 107 |
| abstract_inverted_index.network’s | 58 |
| abstract_inverted_index.performance | 81 |
| abstract_inverted_index.augmentation | 46 |
| abstract_inverted_index.constructing | 56 |
| abstract_inverted_index.incorporates | 32 |
| abstract_inverted_index.intelligence | 10 |
| abstract_inverted_index.classification | 102 |
| abstract_inverted_index.backpropagation | 70 |
| abstract_inverted_index.semi-supervised | 100 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.59736667 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |