Incremental Approximate Maximum Flow via Residual Graph Sparsification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4230/lipics.icalp.2025.91
We give an algorithm that, with high probability, maintains a (1-ε)-approximate s-t maximum flow in undirected, uncapacitated n-vertex graphs undergoing m edge insertions in Õ(m+ n F^*/ε) total update time, where F^{*} is the maximum flow on the final graph. This is the first algorithm to achieve polylogarithmic amortized update time for dense graphs (m = Ω(n²)), and more generally, for graphs where F^* = Õ(m/n). At the heart of our incremental algorithm is the residual graph sparsification technique of Karger and Levine [SICOMP '15], originally designed for computing exact maximum flows in the static setting. Our main contributions are (i) showing how to maintain such sparsifiers for approximate maximum flows in the incremental setting and (ii) generalizing the cut sparsification framework of Fung et al. [SICOMP '19] from undirected graphs to balanced directed graphs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.09105
- https://arxiv.org/pdf/2502.09105
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407571812
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407571812Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4230/lipics.icalp.2025.91Digital Object Identifier
- Title
-
Incremental Approximate Maximum Flow via Residual Graph SparsificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Gramoz Goranci, Monika Henzinger, Harald Räcke, A. R. SricharanList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.09105Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.09105Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.09105Direct OA link when available
- Concepts
-
Residual, Graph, Flow (mathematics), Maximum flow problem, Mathematics, Computer science, Combinatorics, Algorithm, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407571812 |
|---|---|
| doi | https://doi.org/10.4230/lipics.icalp.2025.91 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.09105 |
| ids.openalex | https://openalex.org/W4407571812 |
| fwci | 0.0 |
| type | preprint |
| title | Incremental Approximate Maximum Flow via Residual Graph Sparsification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9815999865531921 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9743000268936157 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9715999960899353 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7095137238502502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5691107511520386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C38349280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4855477511882782 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[2].display_name | Flow (mathematics) |
| concepts[3].id | https://openalex.org/C157469704 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45312973856925964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2585642 |
| concepts[3].display_name | Maximum flow problem |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4458518624305725 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3862031102180481 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3624013662338257 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28560638427734375 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1848078966140747 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.7095137238502502 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5691107511520386 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/flow |
| keywords[2].score | 0.4855477511882782 |
| keywords[2].display_name | Flow (mathematics) |
| keywords[3].id | https://openalex.org/keywords/maximum-flow-problem |
| keywords[3].score | 0.45312973856925964 |
| keywords[3].display_name | Maximum flow problem |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.4458518624305725 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3862031102180481 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.3624013662338257 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.28560638427734375 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/geometry |
| keywords[8].score | 0.1848078966140747 |
| keywords[8].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.09105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.09105 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.09105 |
| locations[1].id | doi:10.48550/arxiv.2502.09105 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.09105 |
| locations[2].id | doi:10.4230/lipics.icalp.2025.91 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407052059 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Dagstuhl Research Online Publication Server |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.4230/lipics.icalp.2025.91 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078315645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9603-2255 |
| authorships[0].author.display_name | Gramoz Goranci |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Goranci, Gramoz |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5003641345 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5008-6530 |
| authorships[1].author.display_name | Monika Henzinger |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Henzinger, Monika |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016682913 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8797-717X |
| authorships[2].author.display_name | Harald Räcke |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Räcke, Harald |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066738665 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | A. R. Sricharan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sricharan, A. R. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.09105 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-15T00:00:00 |
| display_name | Incremental Approximate Maximum Flow via Residual Graph Sparsification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9815999865531921 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W4300237897, https://openalex.org/W2003930232, https://openalex.org/W2263167076, https://openalex.org/W4311255633, https://openalex.org/W2368007657, https://openalex.org/W2391191500, https://openalex.org/W4297894118, https://openalex.org/W2365398175, https://openalex.org/W1979748118, https://openalex.org/W2641655 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.09105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.09105 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.09105 |
| primary_location.id | pmh:oai:arXiv.org:2502.09105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.09105 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.09105 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 55, 64 |
| abstract_inverted_index.a | 9 |
| abstract_inverted_index.m | 20 |
| abstract_inverted_index.n | 25 |
| abstract_inverted_index.(m | 54 |
| abstract_inverted_index.At | 66 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.et | 124 |
| abstract_inverted_index.in | 14, 23, 92, 111 |
| abstract_inverted_index.is | 32, 41, 73 |
| abstract_inverted_index.of | 69, 79, 122 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.to | 45, 103, 131 |
| abstract_inverted_index.(i) | 100 |
| abstract_inverted_index.F^* | 63 |
| abstract_inverted_index.Our | 96 |
| abstract_inverted_index.al. | 125 |
| abstract_inverted_index.and | 57, 81, 115 |
| abstract_inverted_index.are | 99 |
| abstract_inverted_index.cut | 119 |
| abstract_inverted_index.for | 51, 60, 87, 107 |
| abstract_inverted_index.how | 102 |
| abstract_inverted_index.our | 70 |
| abstract_inverted_index.s-t | 11 |
| abstract_inverted_index.the | 33, 37, 42, 67, 74, 93, 112, 118 |
| abstract_inverted_index.'19] | 127 |
| abstract_inverted_index.(ii) | 116 |
| abstract_inverted_index.Fung | 123 |
| abstract_inverted_index.This | 40 |
| abstract_inverted_index.edge | 21 |
| abstract_inverted_index.flow | 13, 35 |
| abstract_inverted_index.from | 128 |
| abstract_inverted_index.give | 1 |
| abstract_inverted_index.high | 6 |
| abstract_inverted_index.main | 97 |
| abstract_inverted_index.more | 58 |
| abstract_inverted_index.such | 105 |
| abstract_inverted_index.time | 50 |
| abstract_inverted_index.with | 5 |
| abstract_inverted_index.'15], | 84 |
| abstract_inverted_index.F^{*} | 31 |
| abstract_inverted_index.dense | 52 |
| abstract_inverted_index.exact | 89 |
| abstract_inverted_index.final | 38 |
| abstract_inverted_index.first | 43 |
| abstract_inverted_index.flows | 91, 110 |
| abstract_inverted_index.graph | 76 |
| abstract_inverted_index.heart | 68 |
| abstract_inverted_index.that, | 4 |
| abstract_inverted_index.time, | 29 |
| abstract_inverted_index.total | 27 |
| abstract_inverted_index.where | 30, 62 |
| abstract_inverted_index.Karger | 80 |
| abstract_inverted_index.Levine | 82 |
| abstract_inverted_index.Õ(m+ | 24 |
| abstract_inverted_index.graph. | 39 |
| abstract_inverted_index.graphs | 18, 53, 61, 130 |
| abstract_inverted_index.static | 94 |
| abstract_inverted_index.update | 28, 49 |
| abstract_inverted_index.F^*/ε) | 26 |
| abstract_inverted_index.[SICOMP | 83, 126 |
| abstract_inverted_index.achieve | 46 |
| abstract_inverted_index.graphs. | 134 |
| abstract_inverted_index.maximum | 12, 34, 90, 109 |
| abstract_inverted_index.setting | 114 |
| abstract_inverted_index.showing | 101 |
| abstract_inverted_index.balanced | 132 |
| abstract_inverted_index.designed | 86 |
| abstract_inverted_index.directed | 133 |
| abstract_inverted_index.maintain | 104 |
| abstract_inverted_index.n-vertex | 17 |
| abstract_inverted_index.residual | 75 |
| abstract_inverted_index.setting. | 95 |
| abstract_inverted_index.Õ(m/n). | 65 |
| abstract_inverted_index.algorithm | 3, 44, 72 |
| abstract_inverted_index.amortized | 48 |
| abstract_inverted_index.computing | 88 |
| abstract_inverted_index.framework | 121 |
| abstract_inverted_index.maintains | 8 |
| abstract_inverted_index.technique | 78 |
| abstract_inverted_index.Ω(n²)), | 56 |
| abstract_inverted_index.generally, | 59 |
| abstract_inverted_index.insertions | 22 |
| abstract_inverted_index.originally | 85 |
| abstract_inverted_index.undergoing | 19 |
| abstract_inverted_index.undirected | 129 |
| abstract_inverted_index.approximate | 108 |
| abstract_inverted_index.incremental | 71, 113 |
| abstract_inverted_index.sparsifiers | 106 |
| abstract_inverted_index.undirected, | 15 |
| abstract_inverted_index.generalizing | 117 |
| abstract_inverted_index.probability, | 7 |
| abstract_inverted_index.contributions | 98 |
| abstract_inverted_index.uncapacitated | 16 |
| abstract_inverted_index.sparsification | 77, 120 |
| abstract_inverted_index.polylogarithmic | 47 |
| abstract_inverted_index.(1-ε)-approximate | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.01620873 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |