Incremental Data-driven Optimization of Complex Systems in Nonstationary Environments Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2012.07225
Existing work on data-driven optimization focuses on problems in static environments, but little attention has been paid to problems in dynamic environments. This paper proposes a data-driven optimization algorithm to deal with the challenges presented by the dynamic environments. First, a data stream ensemble learning method is adopted to train the surrogates so that each base learner of the ensemble learns the time-varying objective function in the previous environments. After that, a multi-task evolutionary algorithm is employed to simultaneously optimize the problems in the past environments assisted by the ensemble surrogate. This way, the optimization tasks in the previous environments can be used to accelerate the tracking of the optimum in the current environment. Since the real fitness function is not available for verifying the surrogates in offline data-driven optimization, a support vector domain description that was designed for outlier detection is introduced to select a reliable solution. Empirical results on six dynamic optimization benchmark problems demonstrate the effectiveness of the proposed algorithm compared with four state-of-the-art data-driven optimization algorithms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2012.07225
- https://arxiv.org/pdf/2012.07225
- OA Status
- green
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2900917815
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2900917815Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2012.07225Digital Object Identifier
- Title
-
Incremental Data-driven Optimization of Complex Systems in Nonstationary EnvironmentsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-14Full publication date if available
- Authors
-
Cuie Yang, Jinliang Ding, Yaochu Jin, Tianyou ChaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2012.07225Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2012.07225Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2012.07225Direct OA link when available
- Concepts
-
Computer science, Benchmark (surveying), Optimization problem, Task (project management), Outlier, Data stream, Domain (mathematical analysis), Machine learning, Fitness function, Artificial intelligence, Mathematical optimization, Algorithm, Genetic algorithm, Engineering, Telecommunications, Geodesy, Systems engineering, Mathematics, Geography, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2900917815 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2012.07225 |
| ids.doi | https://doi.org/10.48550/arxiv.2012.07225 |
| ids.mag | 2900917815 |
| ids.openalex | https://openalex.org/W2900917815 |
| fwci | |
| type | preprint |
| title | Incremental Data-driven Optimization of Complex Systems in Nonstationary Environments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12761 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Stream Mining Techniques |
| topics[1].id | https://openalex.org/T10100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Metaheuristic Optimization Algorithms Research |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7741341590881348 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7352534532546997 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C137836250 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5769416689872742 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[2].display_name | Optimization problem |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.517795205116272 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C79337645 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5121912360191345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[4].display_name | Outlier |
| concepts[5].id | https://openalex.org/C2778484313 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4348165690898895 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1172540 |
| concepts[5].display_name | Data stream |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4311729371547699 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41645684838294983 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C176066374 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4146215319633484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q629118 |
| concepts[8].display_name | Fitness function |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4032200574874878 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3320138156414032 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18829789757728577 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C8880873 |
| concepts[12].level | 2 |
| concepts[12].score | 0.174091637134552 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[12].display_name | Genetic algorithm |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10571038722991943 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C201995342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[16].display_name | Systems engineering |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7741341590881348 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7352534532546997 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/optimization-problem |
| keywords[2].score | 0.5769416689872742 |
| keywords[2].display_name | Optimization problem |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.517795205116272 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/outlier |
| keywords[4].score | 0.5121912360191345 |
| keywords[4].display_name | Outlier |
| keywords[5].id | https://openalex.org/keywords/data-stream |
| keywords[5].score | 0.4348165690898895 |
| keywords[5].display_name | Data stream |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.4311729371547699 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.41645684838294983 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/fitness-function |
| keywords[8].score | 0.4146215319633484 |
| keywords[8].display_name | Fitness function |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4032200574874878 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[10].score | 0.3320138156414032 |
| keywords[10].display_name | Mathematical optimization |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.18829789757728577 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[12].score | 0.174091637134552 |
| keywords[12].display_name | Genetic algorithm |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.10571038722991943 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2012.07225 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2012.07225 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2012.07225 |
| locations[1].id | doi:10.48550/arxiv.2012.07225 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2012.07225 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057021534 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1997-1854 |
| authorships[0].author.display_name | Cuie Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cuie Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| authorships[1].author.id | https://openalex.org/A5022740106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[1].author.display_name | Jinliang Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinliang Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| authorships[2].author.id | https://openalex.org/A5032314861 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1100-0631 |
| authorships[2].author.display_name | Yaochu Jin |
| authorships[2].countries | CN, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28290843 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[1].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].institutions[1].id | https://openalex.org/I28290843 |
| authorships[2].institutions[1].ror | https://ror.org/00ks66431 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I28290843 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Surrey |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yaochu Jin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China |
| authorships[3].author.id | https://openalex.org/A5042520521 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4623-1483 |
| authorships[3].author.display_name | Tianyou Chai |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tianyou Chai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries , Northeastern University , Shenyang 110004, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2012.07225 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Incremental Data-driven Optimization of Complex Systems in Nonstationary Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12761 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Stream Mining Techniques |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574, https://openalex.org/W4246352526, https://openalex.org/W2944280535 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2012.07225 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2012.07225 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2012.07225 |
| primary_location.id | pmh:oai:arXiv.org:2012.07225 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2012.07225 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2012.07225 |
| publication_date | 2020-12-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1543559221, https://openalex.org/W2336467679, https://openalex.org/W1904826605, https://openalex.org/W1595159159, https://openalex.org/W2113442785, https://openalex.org/W2604794100 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 25, 40, 71, 130, 145 |
| abstract_inverted_index.be | 101 |
| abstract_inverted_index.by | 35, 87 |
| abstract_inverted_index.in | 8, 19, 65, 82, 96, 110, 126 |
| abstract_inverted_index.is | 46, 75, 119, 141 |
| abstract_inverted_index.of | 57, 107, 159 |
| abstract_inverted_index.on | 2, 6, 150 |
| abstract_inverted_index.so | 52 |
| abstract_inverted_index.to | 17, 29, 48, 77, 103, 143 |
| abstract_inverted_index.but | 11 |
| abstract_inverted_index.can | 100 |
| abstract_inverted_index.for | 122, 138 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.not | 120 |
| abstract_inverted_index.six | 151 |
| abstract_inverted_index.the | 32, 36, 50, 58, 61, 66, 80, 83, 88, 93, 97, 105, 108, 111, 115, 124, 157, 160 |
| abstract_inverted_index.was | 136 |
| abstract_inverted_index.This | 22, 91 |
| abstract_inverted_index.base | 55 |
| abstract_inverted_index.been | 15 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.deal | 30 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.four | 165 |
| abstract_inverted_index.paid | 16 |
| abstract_inverted_index.past | 84 |
| abstract_inverted_index.real | 116 |
| abstract_inverted_index.that | 53, 135 |
| abstract_inverted_index.used | 102 |
| abstract_inverted_index.way, | 92 |
| abstract_inverted_index.with | 31, 164 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.After | 69 |
| abstract_inverted_index.Since | 114 |
| abstract_inverted_index.paper | 23 |
| abstract_inverted_index.tasks | 95 |
| abstract_inverted_index.that, | 70 |
| abstract_inverted_index.train | 49 |
| abstract_inverted_index.First, | 39 |
| abstract_inverted_index.domain | 133 |
| abstract_inverted_index.learns | 60 |
| abstract_inverted_index.little | 12 |
| abstract_inverted_index.method | 45 |
| abstract_inverted_index.select | 144 |
| abstract_inverted_index.static | 9 |
| abstract_inverted_index.stream | 42 |
| abstract_inverted_index.vector | 132 |
| abstract_inverted_index.adopted | 47 |
| abstract_inverted_index.current | 112 |
| abstract_inverted_index.dynamic | 20, 37, 152 |
| abstract_inverted_index.fitness | 117 |
| abstract_inverted_index.focuses | 5 |
| abstract_inverted_index.learner | 56 |
| abstract_inverted_index.offline | 127 |
| abstract_inverted_index.optimum | 109 |
| abstract_inverted_index.outlier | 139 |
| abstract_inverted_index.results | 149 |
| abstract_inverted_index.support | 131 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.assisted | 86 |
| abstract_inverted_index.compared | 163 |
| abstract_inverted_index.designed | 137 |
| abstract_inverted_index.employed | 76 |
| abstract_inverted_index.ensemble | 43, 59, 89 |
| abstract_inverted_index.function | 64, 118 |
| abstract_inverted_index.learning | 44 |
| abstract_inverted_index.optimize | 79 |
| abstract_inverted_index.previous | 67, 98 |
| abstract_inverted_index.problems | 7, 18, 81, 155 |
| abstract_inverted_index.proposed | 161 |
| abstract_inverted_index.proposes | 24 |
| abstract_inverted_index.reliable | 146 |
| abstract_inverted_index.tracking | 106 |
| abstract_inverted_index.Empirical | 148 |
| abstract_inverted_index.algorithm | 28, 74, 162 |
| abstract_inverted_index.attention | 13 |
| abstract_inverted_index.available | 121 |
| abstract_inverted_index.benchmark | 154 |
| abstract_inverted_index.detection | 140 |
| abstract_inverted_index.objective | 63 |
| abstract_inverted_index.presented | 34 |
| abstract_inverted_index.solution. | 147 |
| abstract_inverted_index.verifying | 123 |
| abstract_inverted_index.accelerate | 104 |
| abstract_inverted_index.challenges | 33 |
| abstract_inverted_index.introduced | 142 |
| abstract_inverted_index.multi-task | 72 |
| abstract_inverted_index.surrogate. | 90 |
| abstract_inverted_index.surrogates | 51, 125 |
| abstract_inverted_index.algorithms. | 169 |
| abstract_inverted_index.data-driven | 3, 26, 128, 167 |
| abstract_inverted_index.demonstrate | 156 |
| abstract_inverted_index.description | 134 |
| abstract_inverted_index.environment. | 113 |
| abstract_inverted_index.environments | 85, 99 |
| abstract_inverted_index.evolutionary | 73 |
| abstract_inverted_index.optimization | 4, 27, 94, 153, 168 |
| abstract_inverted_index.time-varying | 62 |
| abstract_inverted_index.effectiveness | 158 |
| abstract_inverted_index.environments, | 10 |
| abstract_inverted_index.environments. | 21, 38, 68 |
| abstract_inverted_index.optimization, | 129 |
| abstract_inverted_index.simultaneously | 78 |
| abstract_inverted_index.state-of-the-art | 166 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |