Induced Markov chain for wind farm generation forecasting Article Swipe
Systems and methods for forecasting power generation in a wind farm are disclosed. The systems and methods utilize an induced Markov chain model to generate a forecast of power generation of the wind farm. The forecast is at least one of a point forecast or a distributional forecast. Additionally, the systems and methods modify at least one of: (i) a generation of electricity at a power plant coupled to a common power grid as the wind farm; or (ii) a distribution of electricity in the common power grid based on the forecast of power generation of the wind farm. In an exemplary approach, utilizing the induced Markov chain model to generate the forecast may include determining a series of time adjacent power output measurements based on historical wind power measurements and calculating a time series of difference values based on the series of time adjacent power output measurements.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://www.osti.gov/biblio/1771482
- https://www.osti.gov/biblio/1771482
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287645851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287645851Canonical identifier for this work in OpenAlex
- Title
-
Induced Markov chain for wind farm generation forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-22Full publication date if available
- Authors
-
Trevor N. Werho, Junshan Zhang, Vijay VittalList of authors in order
- Landing page
-
https://www.osti.gov/biblio/1771482Publisher landing page
- PDF URL
-
https://www.osti.gov/biblio/1771482Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1771482Direct OA link when available
- Concepts
-
Markov chain, Environmental science, Meteorology, Computer science, Econometrics, Mathematics, Geography, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287645851 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4287645851 |
| fwci | |
| type | article |
| title | Induced Markov chain for wind farm generation forecasting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C98763669 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7959593534469604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[0].display_name | Markov chain |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.42873552441596985 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C153294291 |
| concepts[2].level | 1 |
| concepts[2].score | 0.36862874031066895 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[2].display_name | Meteorology |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3263777196407318 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3248201310634613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.23102781176567078 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.20024317502975464 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.15776106715202332 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/markov-chain |
| keywords[0].score | 0.7959593534469604 |
| keywords[0].display_name | Markov chain |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.42873552441596985 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/meteorology |
| keywords[2].score | 0.36862874031066895 |
| keywords[2].display_name | Meteorology |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3263777196407318 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.3248201310634613 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.23102781176567078 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.20024317502975464 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.15776106715202332 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:osti.gov:1771482 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402487 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[0].source.host_organization | https://openalex.org/I139351228 |
| locations[0].source.host_organization_name | Office of Scientific and Technical Information |
| locations[0].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[0].license | |
| locations[0].pdf_url | https://www.osti.gov/biblio/1771482 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://www.osti.gov/biblio/1771482 |
| authorships[0].author.id | https://openalex.org/A5091813690 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Trevor N. Werho |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Werho, Trevor N. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027033026 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3840-1753 |
| authorships[1].author.display_name | Junshan Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Junshan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086161494 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5886-9698 |
| authorships[2].author.display_name | Vijay Vittal |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Vittal, Vijay |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1771482 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Induced Markov chain for wind farm generation forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:osti.gov:1771482 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.osti.gov/biblio/1771482 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1771482 |
| primary_location.id | pmh:oai:osti.gov:1771482 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402487 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| primary_location.source.host_organization | https://openalex.org/I139351228 |
| primary_location.source.host_organization_name | Office of Scientific and Technical Information |
| primary_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| primary_location.license | |
| primary_location.pdf_url | https://www.osti.gov/biblio/1771482 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://www.osti.gov/biblio/1771482 |
| publication_date | 2023-09-22 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 25, 41, 45, 59, 64, 69, 79, 116, 132 |
| abstract_inverted_index.In | 99 |
| abstract_inverted_index.an | 18, 100 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.at | 37, 54, 63 |
| abstract_inverted_index.in | 7, 83 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.of | 27, 30, 40, 61, 81, 92, 95, 118, 135, 142 |
| abstract_inverted_index.on | 89, 125, 139 |
| abstract_inverted_index.or | 44, 77 |
| abstract_inverted_index.to | 23, 68, 109 |
| abstract_inverted_index.(i) | 58 |
| abstract_inverted_index.The | 13, 34 |
| abstract_inverted_index.and | 1, 15, 51, 130 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.may | 113 |
| abstract_inverted_index.of: | 57 |
| abstract_inverted_index.one | 39, 56 |
| abstract_inverted_index.the | 31, 49, 74, 84, 90, 96, 104, 111, 140 |
| abstract_inverted_index.(ii) | 78 |
| abstract_inverted_index.farm | 10 |
| abstract_inverted_index.grid | 72, 87 |
| abstract_inverted_index.time | 119, 133, 143 |
| abstract_inverted_index.wind | 9, 32, 75, 97, 127 |
| abstract_inverted_index.based | 88, 124, 138 |
| abstract_inverted_index.chain | 21, 107 |
| abstract_inverted_index.farm. | 33, 98 |
| abstract_inverted_index.farm; | 76 |
| abstract_inverted_index.least | 38, 55 |
| abstract_inverted_index.model | 22, 108 |
| abstract_inverted_index.plant | 66 |
| abstract_inverted_index.point | 42 |
| abstract_inverted_index.power | 5, 28, 65, 71, 86, 93, 121, 128, 145 |
| abstract_inverted_index.Markov | 20, 106 |
| abstract_inverted_index.common | 70, 85 |
| abstract_inverted_index.modify | 53 |
| abstract_inverted_index.output | 122, 146 |
| abstract_inverted_index.series | 117, 134, 141 |
| abstract_inverted_index.values | 137 |
| abstract_inverted_index.Systems | 0 |
| abstract_inverted_index.coupled | 67 |
| abstract_inverted_index.include | 114 |
| abstract_inverted_index.induced | 19, 105 |
| abstract_inverted_index.methods | 2, 16, 52 |
| abstract_inverted_index.systems | 14, 50 |
| abstract_inverted_index.utilize | 17 |
| abstract_inverted_index.adjacent | 120, 144 |
| abstract_inverted_index.forecast | 26, 35, 43, 91, 112 |
| abstract_inverted_index.generate | 24, 110 |
| abstract_inverted_index.approach, | 102 |
| abstract_inverted_index.exemplary | 101 |
| abstract_inverted_index.forecast. | 47 |
| abstract_inverted_index.utilizing | 103 |
| abstract_inverted_index.difference | 136 |
| abstract_inverted_index.disclosed. | 12 |
| abstract_inverted_index.generation | 6, 29, 60, 94 |
| abstract_inverted_index.historical | 126 |
| abstract_inverted_index.calculating | 131 |
| abstract_inverted_index.determining | 115 |
| abstract_inverted_index.electricity | 62, 82 |
| abstract_inverted_index.forecasting | 4 |
| abstract_inverted_index.distribution | 80 |
| abstract_inverted_index.measurements | 123, 129 |
| abstract_inverted_index.Additionally, | 48 |
| abstract_inverted_index.measurements. | 147 |
| abstract_inverted_index.distributional | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |