Inductive Program Synthesis over Noisy Datasets using Abstraction Refinement Based Optimization Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2104.13315
We present a new synthesis algorithm to solve program synthesis over noisy datasets, i.e., data that may contain incorrect/corrupted input-output examples. Our algorithm uses an abstraction refinement based optimization process to synthesize programs which optimize the tradeoff between the loss over the noisy dataset and the complexity of the synthesized program. The algorithm uses abstractions to divide the search space of programs into subspaces by computing an abstract value that represents outputs for all programs in a subspace. The abstract value allows our algorithm to compute, for each subspace, a sound approximate lower bound of the loss over all programs in the subspace. It iteratively refines these abstractions to further subdivide the space into smaller subspaces, prune subspaces that do not contain an optimal program, and eventually synthesize an optimal program. We implemented this algorithm in a tool called Rose. We compare Rose to a current state-of-the-art noisy program synthesis system using the SyGuS 2018 benchmark suite. Our evaluation demonstrates that Rose significantly outperforms this previous system: on two noisy benchmark program synthesis problems sets drawn from the SyGus 2018 benchmark suite, Rose delivers speedups of up to 1587 and 81.7, with median speedups of 20.5 and 81.7. Rose also terminates on 20 (out of 54) and 4 (out of 11) more benchmark problems than the previous system. Both Rose and the previous system synthesize programs that are optimal over the provided noisy data sets. For the majority of the problems in the benchmark sets ($272$ out of $286$), the synthesized programs also produce correct outputs for all inputs in the original (unseen) noise-free data set. These results highlight the benefits that Rose can deliver for effective noisy program synthesis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2104.13315
- https://arxiv.org/pdf/2104.13315
- OA Status
- green
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3158913638
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3158913638Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2104.13315Digital Object Identifier
- Title
-
Inductive Program Synthesis over Noisy Datasets using Abstraction Refinement Based OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-27Full publication date if available
- Authors
-
Shivam Handa, Martin RinardList of authors in order
- Landing page
-
https://arxiv.org/abs/2104.13315Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2104.13315Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2104.13315Direct OA link when available
- Concepts
-
Benchmark (surveying), Linear subspace, Computer science, Subspace topology, Suite, Program synthesis, Abstraction, Algorithm, Mathematics, Artificial intelligence, Geography, Geodesy, Epistemology, Archaeology, History, Geometry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3158913638 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2104.13315 |
| ids.doi | https://doi.org/10.48550/arxiv.2104.13315 |
| ids.mag | 3158913638 |
| ids.openalex | https://openalex.org/W3158913638 |
| fwci | |
| type | preprint |
| title | Inductive Program Synthesis over Noisy Datasets using Abstraction Refinement Based Optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10054 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1708 |
| topics[0].subfield.display_name | Hardware and Architecture |
| topics[0].display_name | Parallel Computing and Optimization Techniques |
| topics[1].id | https://openalex.org/T10142 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Formal Methods in Verification |
| topics[2].id | https://openalex.org/T11005 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Radiation Effects in Electronics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8856806755065918 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C12362212 |
| concepts[1].level | 2 |
| concepts[1].score | 0.79990154504776 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q728435 |
| concepts[1].display_name | Linear subspace |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7408465147018433 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C32834561 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6902973651885986 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[3].display_name | Subspace topology |
| concepts[4].id | https://openalex.org/C79581498 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6787858009338379 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1367530 |
| concepts[4].display_name | Suite |
| concepts[5].id | https://openalex.org/C2776937632 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6340413093566895 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4117718 |
| concepts[5].display_name | Program synthesis |
| concepts[6].id | https://openalex.org/C124304363 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6232913136482239 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q673661 |
| concepts[6].display_name | Abstraction |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.544128954410553 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17416253685951233 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16836217045783997 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C166957645 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[13].display_name | Archaeology |
| concepts[14].id | https://openalex.org/C95457728 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[14].display_name | History |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8856806755065918 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/linear-subspace |
| keywords[1].score | 0.79990154504776 |
| keywords[1].display_name | Linear subspace |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7408465147018433 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/subspace-topology |
| keywords[3].score | 0.6902973651885986 |
| keywords[3].display_name | Subspace topology |
| keywords[4].id | https://openalex.org/keywords/suite |
| keywords[4].score | 0.6787858009338379 |
| keywords[4].display_name | Suite |
| keywords[5].id | https://openalex.org/keywords/program-synthesis |
| keywords[5].score | 0.6340413093566895 |
| keywords[5].display_name | Program synthesis |
| keywords[6].id | https://openalex.org/keywords/abstraction |
| keywords[6].score | 0.6232913136482239 |
| keywords[6].display_name | Abstraction |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.544128954410553 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.17416253685951233 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.16836217045783997 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2104.13315 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2104.13315 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2104.13315 |
| locations[1].id | doi:10.48550/arxiv.2104.13315 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2104.13315 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087871590 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shivam Handa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shivam Handa |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045127387 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8095-8523 |
| authorships[1].author.display_name | Martin Rinard |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Martin Rinard |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2104.13315 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-05-10T00:00:00 |
| display_name | Inductive Program Synthesis over Noisy Datasets using Abstraction Refinement Based Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10054 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1708 |
| primary_topic.subfield.display_name | Hardware and Architecture |
| primary_topic.display_name | Parallel Computing and Optimization Techniques |
| related_works | https://openalex.org/W3100286349, https://openalex.org/W2896134808, https://openalex.org/W3172436493, https://openalex.org/W2957492749, https://openalex.org/W1887135636, https://openalex.org/W4287164812, https://openalex.org/W2386063599, https://openalex.org/W1975884855, https://openalex.org/W3213150849, https://openalex.org/W4285605394 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2104.13315 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2104.13315 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2104.13315 |
| primary_location.id | pmh:oai:arXiv.org:2104.13315 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2104.13315 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2104.13315 |
| publication_date | 2021-04-27 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3109609376, https://openalex.org/W1510293570, https://openalex.org/W2550471858, https://openalex.org/W2416325154, https://openalex.org/W2731197199, https://openalex.org/W2093535699, https://openalex.org/W3137184948, https://openalex.org/W2060610732, https://openalex.org/W2995341674, https://openalex.org/W2293101314, https://openalex.org/W2112660220, https://openalex.org/W2601273560, https://openalex.org/W2066792529, https://openalex.org/W2043100293, https://openalex.org/W2132525863, https://openalex.org/W2238673293, https://openalex.org/W2765742677, https://openalex.org/W24577754, https://openalex.org/W2013596093, https://openalex.org/W3105239039, https://openalex.org/W2094878426, https://openalex.org/W1858945639, https://openalex.org/W2550100435 |
| referenced_works_count | 23 |
| abstract_inverted_index.4 | 207 |
| abstract_inverted_index.a | 2, 76, 89, 136, 144 |
| abstract_inverted_index.20 | 202 |
| abstract_inverted_index.It | 103 |
| abstract_inverted_index.We | 0, 131, 140 |
| abstract_inverted_index.an | 24, 66, 122, 128 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.do | 119 |
| abstract_inverted_index.in | 75, 100, 135, 241, 259 |
| abstract_inverted_index.of | 47, 60, 94, 185, 194, 204, 209, 238, 247 |
| abstract_inverted_index.on | 167, 201 |
| abstract_inverted_index.to | 6, 30, 55, 84, 108, 143, 187 |
| abstract_inverted_index.up | 186 |
| abstract_inverted_index.11) | 210 |
| abstract_inverted_index.54) | 205 |
| abstract_inverted_index.For | 235 |
| abstract_inverted_index.Our | 21, 157 |
| abstract_inverted_index.The | 51, 78 |
| abstract_inverted_index.all | 73, 98, 257 |
| abstract_inverted_index.and | 44, 125, 189, 196, 206, 220 |
| abstract_inverted_index.are | 227 |
| abstract_inverted_index.can | 273 |
| abstract_inverted_index.for | 72, 86, 256, 275 |
| abstract_inverted_index.may | 16 |
| abstract_inverted_index.new | 3 |
| abstract_inverted_index.not | 120 |
| abstract_inverted_index.our | 82 |
| abstract_inverted_index.out | 246 |
| abstract_inverted_index.the | 35, 38, 41, 45, 48, 57, 95, 101, 111, 152, 177, 215, 221, 230, 236, 239, 242, 249, 260, 269 |
| abstract_inverted_index.two | 168 |
| abstract_inverted_index.(out | 203, 208 |
| abstract_inverted_index.1587 | 188 |
| abstract_inverted_index.20.5 | 195 |
| abstract_inverted_index.2018 | 154, 179 |
| abstract_inverted_index.Both | 218 |
| abstract_inverted_index.Rose | 142, 161, 182, 198, 219, 272 |
| abstract_inverted_index.also | 199, 252 |
| abstract_inverted_index.data | 14, 233, 264 |
| abstract_inverted_index.each | 87 |
| abstract_inverted_index.from | 176 |
| abstract_inverted_index.into | 62, 113 |
| abstract_inverted_index.loss | 39, 96 |
| abstract_inverted_index.more | 211 |
| abstract_inverted_index.over | 10, 40, 97, 229 |
| abstract_inverted_index.set. | 265 |
| abstract_inverted_index.sets | 174, 244 |
| abstract_inverted_index.than | 214 |
| abstract_inverted_index.that | 15, 69, 118, 160, 226, 271 |
| abstract_inverted_index.this | 133, 164 |
| abstract_inverted_index.tool | 137 |
| abstract_inverted_index.uses | 23, 53 |
| abstract_inverted_index.with | 191 |
| abstract_inverted_index.81.7, | 190 |
| abstract_inverted_index.81.7. | 197 |
| abstract_inverted_index.Rose. | 139 |
| abstract_inverted_index.SyGuS | 153 |
| abstract_inverted_index.SyGus | 178 |
| abstract_inverted_index.These | 266 |
| abstract_inverted_index.based | 27 |
| abstract_inverted_index.bound | 93 |
| abstract_inverted_index.drawn | 175 |
| abstract_inverted_index.i.e., | 13 |
| abstract_inverted_index.lower | 92 |
| abstract_inverted_index.noisy | 11, 42, 147, 169, 232, 277 |
| abstract_inverted_index.prune | 116 |
| abstract_inverted_index.sets. | 234 |
| abstract_inverted_index.solve | 7 |
| abstract_inverted_index.sound | 90 |
| abstract_inverted_index.space | 59, 112 |
| abstract_inverted_index.these | 106 |
| abstract_inverted_index.using | 151 |
| abstract_inverted_index.value | 68, 80 |
| abstract_inverted_index.which | 33 |
| abstract_inverted_index.($272$ | 245 |
| abstract_inverted_index.allows | 81 |
| abstract_inverted_index.called | 138 |
| abstract_inverted_index.divide | 56 |
| abstract_inverted_index.inputs | 258 |
| abstract_inverted_index.median | 192 |
| abstract_inverted_index.search | 58 |
| abstract_inverted_index.suite, | 181 |
| abstract_inverted_index.suite. | 156 |
| abstract_inverted_index.system | 150, 223 |
| abstract_inverted_index.$286$), | 248 |
| abstract_inverted_index.between | 37 |
| abstract_inverted_index.compare | 141 |
| abstract_inverted_index.contain | 17, 121 |
| abstract_inverted_index.correct | 254 |
| abstract_inverted_index.current | 145 |
| abstract_inverted_index.dataset | 43 |
| abstract_inverted_index.deliver | 274 |
| abstract_inverted_index.further | 109 |
| abstract_inverted_index.optimal | 123, 129, 228 |
| abstract_inverted_index.outputs | 71, 255 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.process | 29 |
| abstract_inverted_index.produce | 253 |
| abstract_inverted_index.program | 8, 148, 171, 278 |
| abstract_inverted_index.refines | 105 |
| abstract_inverted_index.results | 267 |
| abstract_inverted_index.smaller | 114 |
| abstract_inverted_index.system. | 217 |
| abstract_inverted_index.system: | 166 |
| abstract_inverted_index.(unseen) | 262 |
| abstract_inverted_index.abstract | 67, 79 |
| abstract_inverted_index.benefits | 270 |
| abstract_inverted_index.compute, | 85 |
| abstract_inverted_index.delivers | 183 |
| abstract_inverted_index.majority | 237 |
| abstract_inverted_index.optimize | 34 |
| abstract_inverted_index.original | 261 |
| abstract_inverted_index.previous | 165, 216, 222 |
| abstract_inverted_index.problems | 173, 213, 240 |
| abstract_inverted_index.program, | 124 |
| abstract_inverted_index.program. | 50, 130 |
| abstract_inverted_index.programs | 32, 61, 74, 99, 225, 251 |
| abstract_inverted_index.provided | 231 |
| abstract_inverted_index.speedups | 184, 193 |
| abstract_inverted_index.tradeoff | 36 |
| abstract_inverted_index.algorithm | 5, 22, 52, 83, 134 |
| abstract_inverted_index.benchmark | 155, 170, 180, 212, 243 |
| abstract_inverted_index.computing | 65 |
| abstract_inverted_index.datasets, | 12 |
| abstract_inverted_index.effective | 276 |
| abstract_inverted_index.examples. | 20 |
| abstract_inverted_index.highlight | 268 |
| abstract_inverted_index.subdivide | 110 |
| abstract_inverted_index.subspace, | 88 |
| abstract_inverted_index.subspace. | 77, 102 |
| abstract_inverted_index.subspaces | 63, 117 |
| abstract_inverted_index.synthesis | 4, 9, 149, 172 |
| abstract_inverted_index.complexity | 46 |
| abstract_inverted_index.evaluation | 158 |
| abstract_inverted_index.eventually | 126 |
| abstract_inverted_index.noise-free | 263 |
| abstract_inverted_index.refinement | 26 |
| abstract_inverted_index.represents | 70 |
| abstract_inverted_index.subspaces, | 115 |
| abstract_inverted_index.synthesis. | 279 |
| abstract_inverted_index.synthesize | 31, 127, 224 |
| abstract_inverted_index.terminates | 200 |
| abstract_inverted_index.abstraction | 25 |
| abstract_inverted_index.approximate | 91 |
| abstract_inverted_index.implemented | 132 |
| abstract_inverted_index.iteratively | 104 |
| abstract_inverted_index.outperforms | 163 |
| abstract_inverted_index.synthesized | 49, 250 |
| abstract_inverted_index.abstractions | 54, 107 |
| abstract_inverted_index.demonstrates | 159 |
| abstract_inverted_index.input-output | 19 |
| abstract_inverted_index.optimization | 28 |
| abstract_inverted_index.significantly | 162 |
| abstract_inverted_index.state-of-the-art | 146 |
| abstract_inverted_index.incorrect/corrupted | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |