Inference after latent variable estimation for single-cell RNA sequencing data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1093/biostatistics/kxac047
Summary In the analysis of single-cell RNA sequencing data, researchers often characterize the variation between cells by estimating a latent variable, such as cell type or pseudotime, representing some aspect of the cell’s state. They then test each gene for association with the estimated latent variable. If the same data are used for both of these steps, then standard methods for computing p-values in the second step will fail to achieve statistical guarantees such as Type 1 error control. Furthermore, approaches such as sample splitting that can be applied to solve similar problems in other settings are not applicable in this context. In this article, we introduce count splitting, a flexible framework that allows us to carry out valid inference in this setting, for virtually any latent variable estimation technique and inference approach, under a Poisson assumption. We demonstrate the Type 1 error control and power of count splitting in a simulation study and apply count splitting to a data set of pluripotent stem cells differentiating to cardiomyocytes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/biostatistics/kxac047
- OA Status
- green
- Cited By
- 53
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311239350
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311239350Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/biostatistics/kxac047Digital Object Identifier
- Title
-
Inference after latent variable estimation for single-cell RNA sequencing dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-13Full publication date if available
- Authors
-
Anna Neufeld, Lucy L. Gao, Joshua M Popp, Alexis Battle, Daniela WittenList of authors in order
- Landing page
-
https://doi.org/10.1093/biostatistics/kxac047Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/12235260Direct OA link when available
- Concepts
-
Inference, Latent variable, Count data, Computer science, Type I and type II errors, Latent variable model, Context (archaeology), Poisson distribution, Statistical inference, Data set, Data mining, Algorithm, Latent class model, Statistics, Mathematics, Machine learning, Artificial intelligence, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
53Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 21, 2024: 21, 2023: 9, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311239350 |
|---|---|
| doi | https://doi.org/10.1093/biostatistics/kxac047 |
| ids.doi | https://doi.org/10.1093/biostatistics/kxac047 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36511385 |
| ids.openalex | https://openalex.org/W4311239350 |
| fwci | 6.64573453 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003198 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Computer Simulation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D017423 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Sequence Analysis, RNA |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D003198 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Computer Simulation |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D017423 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Sequence Analysis, RNA |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003198 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Computer Simulation |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D017423 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Sequence Analysis, RNA |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D003198 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Computer Simulation |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D017423 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Sequence Analysis, RNA |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D003198 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Computer Simulation |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D017423 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Sequence Analysis, RNA |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D003198 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Computer Simulation |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D017423 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Sequence Analysis, RNA |
| type | article |
| title | Inference after latent variable estimation for single-cell RNA sequencing data |
| awards[0].id | https://openalex.org/G1119148356 |
| awards[0].funder_id | https://openalex.org/F4320306164 |
| awards[0].display_name | |
| awards[0].funder_award_id | NIH R01 EB026908 |
| awards[0].funder_display_name | Simons Foundation |
| awards[1].id | https://openalex.org/G6958863986 |
| awards[1].funder_id | https://openalex.org/F4320306164 |
| awards[1].display_name | |
| awards[1].funder_award_id | NIH R01 GM123993 |
| awards[1].funder_display_name | Simons Foundation |
| awards[2].id | https://openalex.org/G3851709413 |
| awards[2].funder_id | https://openalex.org/F4320306164 |
| awards[2].display_name | |
| awards[2].funder_award_id | NIH R01 DA047869 |
| awards[2].funder_display_name | Simons Foundation |
| biblio.issue | 1 |
| biblio.volume | 25 |
| biblio.last_page | 287 |
| biblio.first_page | 270 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9659000039100647 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T11287 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9646999835968018 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer Genomics and Diagnostics |
| funders[0].id | https://openalex.org/F4320306164 |
| funders[0].ror | https://ror.org/01cmst727 |
| funders[0].display_name | Simons Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 3018 |
| apc_list.currency | USD |
| apc_list.value_usd | 3018 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7187325954437256 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C51167844 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6980847120285034 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[1].display_name | Latent variable |
| concepts[2].id | https://openalex.org/C33643355 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6355955600738525 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[2].display_name | Count data |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6238484978675842 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C40696583 |
| concepts[4].level | 2 |
| concepts[4].score | 0.514421284198761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q989120 |
| concepts[4].display_name | Type I and type II errors |
| concepts[5].id | https://openalex.org/C65965080 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5137354135513306 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1806885 |
| concepts[5].display_name | Latent variable model |
| concepts[6].id | https://openalex.org/C2779343474 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49547088146209717 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[6].display_name | Context (archaeology) |
| concepts[7].id | https://openalex.org/C100906024 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49330344796180725 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[7].display_name | Poisson distribution |
| concepts[8].id | https://openalex.org/C134261354 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4838094115257263 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[8].display_name | Statistical inference |
| concepts[9].id | https://openalex.org/C58489278 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44802340865135193 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[9].display_name | Data set |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44324737787246704 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.43207836151123047 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C70727504 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4124346971511841 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1806878 |
| concepts[12].display_name | Latent class model |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.38749659061431885 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2879193425178528 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2271159291267395 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.20925623178482056 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.10029873251914978 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7187325954437256 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/latent-variable |
| keywords[1].score | 0.6980847120285034 |
| keywords[1].display_name | Latent variable |
| keywords[2].id | https://openalex.org/keywords/count-data |
| keywords[2].score | 0.6355955600738525 |
| keywords[2].display_name | Count data |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6238484978675842 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/type-i-and-type-ii-errors |
| keywords[4].score | 0.514421284198761 |
| keywords[4].display_name | Type I and type II errors |
| keywords[5].id | https://openalex.org/keywords/latent-variable-model |
| keywords[5].score | 0.5137354135513306 |
| keywords[5].display_name | Latent variable model |
| keywords[6].id | https://openalex.org/keywords/context |
| keywords[6].score | 0.49547088146209717 |
| keywords[6].display_name | Context (archaeology) |
| keywords[7].id | https://openalex.org/keywords/poisson-distribution |
| keywords[7].score | 0.49330344796180725 |
| keywords[7].display_name | Poisson distribution |
| keywords[8].id | https://openalex.org/keywords/statistical-inference |
| keywords[8].score | 0.4838094115257263 |
| keywords[8].display_name | Statistical inference |
| keywords[9].id | https://openalex.org/keywords/data-set |
| keywords[9].score | 0.44802340865135193 |
| keywords[9].display_name | Data set |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.44324737787246704 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.43207836151123047 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/latent-class-model |
| keywords[12].score | 0.4124346971511841 |
| keywords[12].display_name | Latent class model |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.38749659061431885 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.2879193425178528 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.2271159291267395 |
| keywords[15].display_name | Machine learning |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.20925623178482056 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/biology |
| keywords[17].score | 0.10029873251914978 |
| keywords[17].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1093/biostatistics/kxac047 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S190140075 |
| locations[0].source.issn | 1465-4644, 1468-4357 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1465-4644 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Biostatistics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biostatistics |
| locations[0].landing_page_url | https://doi.org/10.1093/biostatistics/kxac047 |
| locations[1].id | pmid:36511385 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biostatistics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36511385 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12235260 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biostatistics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12235260 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5085126721 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7638-0861 |
| authorships[0].author.display_name | Anna Neufeld |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, University of Washington , Seattle, WA 98195, USA |
| authorships[0].institutions[0].id | https://openalex.org/I201448701 |
| authorships[0].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Washington |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anna Neufeld |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics, University of Washington , Seattle, WA 98195, USA |
| authorships[1].author.id | https://openalex.org/A5079270469 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6811-0746 |
| authorships[1].author.display_name | Lucy L. Gao |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, University of British Columbia , BC V6T 1Z4, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lucy L Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, University of British Columbia , BC V6T 1Z4, Canada |
| authorships[2].author.id | https://openalex.org/A5070468829 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8522-5732 |
| authorships[2].author.display_name | Joshua M Popp |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD 21218, USA |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshua Popp |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD 21218, USA |
| authorships[3].author.id | https://openalex.org/A5063708781 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5287-627X |
| authorships[3].author.display_name | Alexis Battle |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Department of Computer Science, Johns Hopkins University , Baltimore, MD 21218, USA |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alexis Battle |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Department of Computer Science, Johns Hopkins University , Baltimore, MD 21218, USA |
| authorships[4].author.id | https://openalex.org/A5031682567 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1764-1184 |
| authorships[4].author.display_name | Daniela Witten |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Washington Department of Statistics, University of Washington, Seattle, WA 98195, USA and Department of Biostatistics, , Seattle, WA 98195, USA |
| authorships[4].institutions[0].id | https://openalex.org/I201448701 |
| authorships[4].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Washington |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Daniela Witten |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Washington Department of Statistics, University of Washington, Seattle, WA 98195, USA and Department of Biostatistics, , Seattle, WA 98195, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12235260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Inference after latent variable estimation for single-cell RNA sequencing data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4230230730, https://openalex.org/W1501016332, https://openalex.org/W4237379778, https://openalex.org/W1535265092, https://openalex.org/W1603253275, https://openalex.org/W4381250654, https://openalex.org/W2103023456, https://openalex.org/W2363394205, https://openalex.org/W3109783536, https://openalex.org/W1471855 |
| cited_by_count | 53 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 21 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:12235260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Biostatistics |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12235260 |
| primary_location.id | doi:10.1093/biostatistics/kxac047 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S190140075 |
| primary_location.source.issn | 1465-4644, 1468-4357 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1465-4644 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Biostatistics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biostatistics |
| primary_location.landing_page_url | https://doi.org/10.1093/biostatistics/kxac047 |
| publication_date | 2022-12-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6768183699, https://openalex.org/W6799506669, https://openalex.org/W3009701588, https://openalex.org/W2121637463, https://openalex.org/W1974010676, https://openalex.org/W3165360138, https://openalex.org/W4211192810, https://openalex.org/W4225695255, https://openalex.org/W6787109999, https://openalex.org/W3027249069, https://openalex.org/W2170335255, https://openalex.org/W4235169531, https://openalex.org/W4252227150, https://openalex.org/W3005127469, https://openalex.org/W1535995764, https://openalex.org/W6842301817, https://openalex.org/W3164156820, https://openalex.org/W3159652022, https://openalex.org/W1885924565, https://openalex.org/W2998065416, https://openalex.org/W1984883254, https://openalex.org/W3009370296, https://openalex.org/W624912034, https://openalex.org/W6746499259, https://openalex.org/W2973156019, https://openalex.org/W2976333423, https://openalex.org/W2771918070, https://openalex.org/W3099470970, https://openalex.org/W3191848269, https://openalex.org/W3111795212, https://openalex.org/W4387700042 |
| referenced_works_count | 31 |
| abstract_inverted_index.1 | 76, 141 |
| abstract_inverted_index.a | 18, 109, 134, 150, 158 |
| abstract_inverted_index.If | 46 |
| abstract_inverted_index.In | 1, 102 |
| abstract_inverted_index.We | 137 |
| abstract_inverted_index.as | 22, 74, 82 |
| abstract_inverted_index.be | 87 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 63, 93, 99, 120, 149 |
| abstract_inverted_index.of | 4, 30, 54, 146, 161 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 69, 89, 115, 157, 166 |
| abstract_inverted_index.us | 114 |
| abstract_inverted_index.we | 105 |
| abstract_inverted_index.RNA | 6 |
| abstract_inverted_index.and | 130, 144, 153 |
| abstract_inverted_index.any | 125 |
| abstract_inverted_index.are | 50, 96 |
| abstract_inverted_index.can | 86 |
| abstract_inverted_index.for | 39, 52, 60, 123 |
| abstract_inverted_index.not | 97 |
| abstract_inverted_index.out | 117 |
| abstract_inverted_index.set | 160 |
| abstract_inverted_index.the | 2, 12, 31, 42, 47, 64, 139 |
| abstract_inverted_index.They | 34 |
| abstract_inverted_index.Type | 75, 140 |
| abstract_inverted_index.both | 53 |
| abstract_inverted_index.cell | 23 |
| abstract_inverted_index.data | 49, 159 |
| abstract_inverted_index.each | 37 |
| abstract_inverted_index.fail | 68 |
| abstract_inverted_index.gene | 38 |
| abstract_inverted_index.same | 48 |
| abstract_inverted_index.some | 28 |
| abstract_inverted_index.stem | 163 |
| abstract_inverted_index.step | 66 |
| abstract_inverted_index.such | 21, 73, 81 |
| abstract_inverted_index.test | 36 |
| abstract_inverted_index.that | 85, 112 |
| abstract_inverted_index.then | 35, 57 |
| abstract_inverted_index.this | 100, 103, 121 |
| abstract_inverted_index.type | 24 |
| abstract_inverted_index.used | 51 |
| abstract_inverted_index.will | 67 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.apply | 154 |
| abstract_inverted_index.carry | 116 |
| abstract_inverted_index.cells | 15, 164 |
| abstract_inverted_index.count | 107, 147, 155 |
| abstract_inverted_index.data, | 8 |
| abstract_inverted_index.error | 77, 142 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.other | 94 |
| abstract_inverted_index.power | 145 |
| abstract_inverted_index.solve | 90 |
| abstract_inverted_index.study | 152 |
| abstract_inverted_index.these | 55 |
| abstract_inverted_index.under | 133 |
| abstract_inverted_index.valid | 118 |
| abstract_inverted_index.allows | 113 |
| abstract_inverted_index.aspect | 29 |
| abstract_inverted_index.latent | 19, 44, 126 |
| abstract_inverted_index.sample | 83 |
| abstract_inverted_index.second | 65 |
| abstract_inverted_index.state. | 33 |
| abstract_inverted_index.steps, | 56 |
| abstract_inverted_index.Poisson | 135 |
| abstract_inverted_index.Summary | 0 |
| abstract_inverted_index.achieve | 70 |
| abstract_inverted_index.applied | 88 |
| abstract_inverted_index.between | 14 |
| abstract_inverted_index.control | 143 |
| abstract_inverted_index.methods | 59 |
| abstract_inverted_index.similar | 91 |
| abstract_inverted_index.analysis | 3 |
| abstract_inverted_index.article, | 104 |
| abstract_inverted_index.cell’s | 32 |
| abstract_inverted_index.context. | 101 |
| abstract_inverted_index.control. | 78 |
| abstract_inverted_index.flexible | 110 |
| abstract_inverted_index.p-values | 62 |
| abstract_inverted_index.problems | 92 |
| abstract_inverted_index.setting, | 122 |
| abstract_inverted_index.settings | 95 |
| abstract_inverted_index.standard | 58 |
| abstract_inverted_index.variable | 127 |
| abstract_inverted_index.approach, | 132 |
| abstract_inverted_index.computing | 61 |
| abstract_inverted_index.estimated | 43 |
| abstract_inverted_index.framework | 111 |
| abstract_inverted_index.inference | 119, 131 |
| abstract_inverted_index.introduce | 106 |
| abstract_inverted_index.splitting | 84, 148, 156 |
| abstract_inverted_index.technique | 129 |
| abstract_inverted_index.variable, | 20 |
| abstract_inverted_index.variable. | 45 |
| abstract_inverted_index.variation | 13 |
| abstract_inverted_index.virtually | 124 |
| abstract_inverted_index.applicable | 98 |
| abstract_inverted_index.approaches | 80 |
| abstract_inverted_index.estimating | 17 |
| abstract_inverted_index.estimation | 128 |
| abstract_inverted_index.guarantees | 72 |
| abstract_inverted_index.sequencing | 7 |
| abstract_inverted_index.simulation | 151 |
| abstract_inverted_index.splitting, | 108 |
| abstract_inverted_index.association | 40 |
| abstract_inverted_index.assumption. | 136 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.pluripotent | 162 |
| abstract_inverted_index.pseudotime, | 26 |
| abstract_inverted_index.researchers | 9 |
| abstract_inverted_index.single-cell | 5 |
| abstract_inverted_index.statistical | 71 |
| abstract_inverted_index.Furthermore, | 79 |
| abstract_inverted_index.characterize | 11 |
| abstract_inverted_index.representing | 27 |
| abstract_inverted_index.cardiomyocytes. | 167 |
| abstract_inverted_index.differentiating | 165 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5085126721 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I201448701 |
| citation_normalized_percentile.value | 0.96683396 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |