Inferring building functions from a weighted graph isomorphic network based on the building-POI graph Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1080/10095020.2025.2540561
Building function is the practical use of a structure, playing a crucial role in urban planning and risk management. However, prevailing studies utilizing graph neural networks (GNNs) often regard building function inference as a node classification task, which fails to solve the problem of model performance bias toward residential buildings caused by sample imbalance. To address this limitation, we construct the building-POI graph by regarding POIs distributed on a building as graph nodes, incorporate the vertical spatial location of POIs and the contribution of different types of POIs to building function, and convert the building function inference into a graph classification task. Then, we propose a weighted graph isomorphic network (WGIN) by improving the aggregators and readout of GIN for distinguishing buildings. To validate the efficacy of the proposed method, we compare it with existing approaches. The results demonstrate that the graph construction method and the proposed classification model outperform alternative methods in building function inference, achieving the highest accuracy of 82.27%, an F1 value of 74.57%, and a kappa coefficient of 0.716. Notably, our approach alleviates the challenge of accuracy differences across various building types and holds immense significance for supplementing and validating existing data and optimizing urban structures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/10095020.2025.2540561
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413280080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413280080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/10095020.2025.2540561Digital Object Identifier
- Title
-
Inferring building functions from a weighted graph isomorphic network based on the building-POI graphWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-18Full publication date if available
- Authors
-
Ya Zhang, Jiping Liu, Yong Wang, An Luo, Shenghua Xu, Zhiran ZhangList of authors in order
- Landing page
-
https://doi.org/10.1080/10095020.2025.2540561Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/10095020.2025.2540561Direct OA link when available
- Concepts
-
Graph, Windmill graph, Butterfly graph, Computer science, Line graph, Combinatorics, Mathematics, Voltage graphTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413280080 |
|---|---|
| doi | https://doi.org/10.1080/10095020.2025.2540561 |
| ids.doi | https://doi.org/10.1080/10095020.2025.2540561 |
| ids.openalex | https://openalex.org/W4413280080 |
| fwci | 0.0 |
| type | article |
| title | Inferring building functions from a weighted graph isomorphic network based on the building-POI graph |
| awards[0].id | https://openalex.org/G2906917789 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 4237012484 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 19 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9915000200271606 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10799 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Data Visualization and Analytics |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1625 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1993 |
| apc_paid.value | 1625 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1993 |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5597044229507446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C73380178 |
| concepts[1].level | 5 |
| concepts[1].score | 0.44193029403686523 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8024306 |
| concepts[1].display_name | Windmill graph |
| concepts[2].id | https://openalex.org/C18819970 |
| concepts[2].level | 5 |
| concepts[2].score | 0.4319014549255371 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3035340 |
| concepts[2].display_name | Butterfly graph |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4196079969406128 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C203776342 |
| concepts[4].level | 3 |
| concepts[4].score | 0.3863593339920044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[4].display_name | Line graph |
| concepts[5].id | https://openalex.org/C114614502 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37535133957862854 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[5].display_name | Combinatorics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.34181076288223267 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C22149727 |
| concepts[7].level | 4 |
| concepts[7].score | 0.33466166257858276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7940747 |
| concepts[7].display_name | Voltage graph |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.5597044229507446 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/windmill-graph |
| keywords[1].score | 0.44193029403686523 |
| keywords[1].display_name | Windmill graph |
| keywords[2].id | https://openalex.org/keywords/butterfly-graph |
| keywords[2].score | 0.4319014549255371 |
| keywords[2].display_name | Butterfly graph |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4196079969406128 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/line-graph |
| keywords[4].score | 0.3863593339920044 |
| keywords[4].display_name | Line graph |
| keywords[5].id | https://openalex.org/keywords/combinatorics |
| keywords[5].score | 0.37535133957862854 |
| keywords[5].display_name | Combinatorics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.34181076288223267 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/voltage-graph |
| keywords[7].score | 0.33466166257858276 |
| keywords[7].display_name | Voltage graph |
| language | en |
| locations[0].id | doi:10.1080/10095020.2025.2540561 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36798160 |
| locations[0].source.issn | 1009-5020, 1993-5153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1009-5020 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Geo-spatial Information Science |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geo-spatial Information Science |
| locations[0].landing_page_url | https://doi.org/10.1080/10095020.2025.2540561 |
| locations[1].id | pmh:oai:doaj.org/article:91eb06a198e74e8c97d3c114577539de |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Geo-spatial Information Science, Pp 1-19 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/91eb06a198e74e8c97d3c114577539de |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100342828 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5390-9053 |
| authorships[0].author.display_name | Ya Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210114963 |
| authorships[0].affiliations[0].raw_affiliation_string | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I211433327, https://openalex.org/I4210141685 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Surveying and Mapping Standardization, Ministry of Natural Resources, Xi'an, China |
| authorships[0].affiliations[2].raw_affiliation_string | Ministry of Natural Resources |
| authorships[0].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[0].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[0].institutions[1].id | https://openalex.org/I211433327 |
| authorships[0].institutions[1].ror | https://ror.org/02kxqx159 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I211433327, https://openalex.org/I4210127390 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Natural Resources |
| authorships[0].institutions[2].id | https://openalex.org/I4210141685 |
| authorships[0].institutions[2].ror | https://ror.org/042t78q04 |
| authorships[0].institutions[2].type | company |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210141685 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Nanjing Surveying and Mapping Research Institute (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang Ya |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Surveying and Mapping Standardization, Ministry of Natural Resources, Xi'an, China, Ministry of Natural Resources, Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5109448683 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiping Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210114963 |
| authorships[1].affiliations[0].raw_affiliation_string | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[1].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiping Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5101746911 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3135-9094 |
| authorships[2].author.display_name | Yong Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210114963 |
| authorships[2].affiliations[0].raw_affiliation_string | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[2].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang Yong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5101958177 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-8563-414X |
| authorships[3].author.display_name | An Luo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210114963 |
| authorships[3].affiliations[0].raw_affiliation_string | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[3].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luo An |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5100716244 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9275-3250 |
| authorships[4].author.display_name | Shenghua Xu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210114963 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210114963 |
| authorships[4].institutions[0].ror | https://ror.org/02j693n47 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210114963 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Surveying and Mapping |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shenghua Xu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Center of Geospatial Big Data Application, Chinese Academy of Surveying and Mapping, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5039300646 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1447-4517 |
| authorships[5].author.display_name | Zhiran Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181903023 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an, China |
| authorships[5].institutions[0].id | https://openalex.org/I181903023 |
| authorships[5].institutions[0].ror | https://ror.org/040c7js64 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I181903023 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xi'an Shiyou University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhiran Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/10095020.2025.2540561 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Inferring building functions from a weighted graph isomorphic network based on the building-POI graph |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9915000200271606 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W1999761254, https://openalex.org/W3028426988, https://openalex.org/W2389503661, https://openalex.org/W2913613375, https://openalex.org/W2401187750, https://openalex.org/W2560496754, https://openalex.org/W2074881734, https://openalex.org/W3030427365, https://openalex.org/W4250925231, https://openalex.org/W2065459306 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/10095020.2025.2540561 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36798160 |
| best_oa_location.source.issn | 1009-5020, 1993-5153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1009-5020 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Geo-spatial Information Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geo-spatial Information Science |
| best_oa_location.landing_page_url | https://doi.org/10.1080/10095020.2025.2540561 |
| primary_location.id | doi:10.1080/10095020.2025.2540561 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36798160 |
| primary_location.source.issn | 1009-5020, 1993-5153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1009-5020 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Geo-spatial Information Science |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geo-spatial Information Science |
| primary_location.landing_page_url | https://doi.org/10.1080/10095020.2025.2540561 |
| publication_date | 2025-08-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4385515747, https://openalex.org/W4392499455, https://openalex.org/W4395073188, https://openalex.org/W2117186870, https://openalex.org/W3011147769, https://openalex.org/W4285038156, https://openalex.org/W4388081873, https://openalex.org/W2566415567, https://openalex.org/W4220857710, https://openalex.org/W4200271441, https://openalex.org/W2996833139, https://openalex.org/W142267735, https://openalex.org/W4311016703, https://openalex.org/W2904177573, https://openalex.org/W3121125901, https://openalex.org/W4392887604, https://openalex.org/W2919115771, https://openalex.org/W2776425102, https://openalex.org/W2137825465, https://openalex.org/W4296745843, https://openalex.org/W2612868106, https://openalex.org/W4206197186, https://openalex.org/W4366974927, https://openalex.org/W4288680347, https://openalex.org/W3177028972, https://openalex.org/W3153761130, https://openalex.org/W2907492528, https://openalex.org/W4303578684, https://openalex.org/W2962711740, https://openalex.org/W4225287068, https://openalex.org/W2920964209, https://openalex.org/W2534538876, https://openalex.org/W4224436100, https://openalex.org/W4380053102, https://openalex.org/W4316171001, https://openalex.org/W2904703694, https://openalex.org/W3139051923, https://openalex.org/W3195869152, https://openalex.org/W2094627701, https://openalex.org/W4311748236, https://openalex.org/W2748337466, https://openalex.org/W4400700586, https://openalex.org/W2325982591, https://openalex.org/W3034407514, https://openalex.org/W1932973189, https://openalex.org/W2042420536, https://openalex.org/W2947969980 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 7, 10, 33, 68, 98, 105, 168 |
| abstract_inverted_index.F1 | 163 |
| abstract_inverted_index.To | 54, 122 |
| abstract_inverted_index.an | 162 |
| abstract_inverted_index.as | 32, 70 |
| abstract_inverted_index.by | 51, 63, 111 |
| abstract_inverted_index.in | 13, 152 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.it | 132 |
| abstract_inverted_index.of | 6, 43, 78, 83, 86, 117, 126, 160, 165, 171, 179 |
| abstract_inverted_index.on | 67 |
| abstract_inverted_index.to | 39, 88 |
| abstract_inverted_index.we | 58, 103, 130 |
| abstract_inverted_index.GIN | 118 |
| abstract_inverted_index.The | 136 |
| abstract_inverted_index.and | 16, 80, 91, 115, 144, 167, 186, 192, 196 |
| abstract_inverted_index.for | 119, 190 |
| abstract_inverted_index.our | 174 |
| abstract_inverted_index.the | 3, 41, 60, 74, 81, 93, 113, 124, 127, 140, 145, 157, 177 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.POIs | 65, 79, 87 |
| abstract_inverted_index.bias | 46 |
| abstract_inverted_index.data | 195 |
| abstract_inverted_index.into | 97 |
| abstract_inverted_index.node | 34 |
| abstract_inverted_index.risk | 17 |
| abstract_inverted_index.role | 12 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.Then, | 102 |
| abstract_inverted_index.fails | 38 |
| abstract_inverted_index.graph | 23, 62, 71, 99, 107, 141 |
| abstract_inverted_index.holds | 187 |
| abstract_inverted_index.kappa | 169 |
| abstract_inverted_index.model | 44, 148 |
| abstract_inverted_index.often | 27 |
| abstract_inverted_index.solve | 40 |
| abstract_inverted_index.task, | 36 |
| abstract_inverted_index.task. | 101 |
| abstract_inverted_index.types | 85, 185 |
| abstract_inverted_index.urban | 14, 198 |
| abstract_inverted_index.value | 164 |
| abstract_inverted_index.which | 37 |
| abstract_inverted_index.(GNNs) | 26 |
| abstract_inverted_index.(WGIN) | 110 |
| abstract_inverted_index.0.716. | 172 |
| abstract_inverted_index.across | 182 |
| abstract_inverted_index.caused | 50 |
| abstract_inverted_index.method | 143 |
| abstract_inverted_index.neural | 24 |
| abstract_inverted_index.nodes, | 72 |
| abstract_inverted_index.regard | 28 |
| abstract_inverted_index.sample | 52 |
| abstract_inverted_index.toward | 47 |
| abstract_inverted_index.74.57%, | 166 |
| abstract_inverted_index.82.27%, | 161 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.compare | 131 |
| abstract_inverted_index.convert | 92 |
| abstract_inverted_index.crucial | 11 |
| abstract_inverted_index.highest | 158 |
| abstract_inverted_index.immense | 188 |
| abstract_inverted_index.method, | 129 |
| abstract_inverted_index.methods | 151 |
| abstract_inverted_index.network | 109 |
| abstract_inverted_index.playing | 9 |
| abstract_inverted_index.problem | 42 |
| abstract_inverted_index.propose | 104 |
| abstract_inverted_index.readout | 116 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.spatial | 76 |
| abstract_inverted_index.studies | 21 |
| abstract_inverted_index.various | 183 |
| abstract_inverted_index.Building | 0 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Notably, | 173 |
| abstract_inverted_index.accuracy | 159, 180 |
| abstract_inverted_index.approach | 175 |
| abstract_inverted_index.building | 29, 69, 89, 94, 153, 184 |
| abstract_inverted_index.efficacy | 125 |
| abstract_inverted_index.existing | 134, 194 |
| abstract_inverted_index.function | 1, 30, 95, 154 |
| abstract_inverted_index.location | 77 |
| abstract_inverted_index.networks | 25 |
| abstract_inverted_index.planning | 15 |
| abstract_inverted_index.proposed | 128, 146 |
| abstract_inverted_index.validate | 123 |
| abstract_inverted_index.vertical | 75 |
| abstract_inverted_index.weighted | 106 |
| abstract_inverted_index.achieving | 156 |
| abstract_inverted_index.buildings | 49 |
| abstract_inverted_index.challenge | 178 |
| abstract_inverted_index.construct | 59 |
| abstract_inverted_index.different | 84 |
| abstract_inverted_index.function, | 90 |
| abstract_inverted_index.improving | 112 |
| abstract_inverted_index.inference | 31, 96 |
| abstract_inverted_index.practical | 4 |
| abstract_inverted_index.regarding | 64 |
| abstract_inverted_index.utilizing | 22 |
| abstract_inverted_index.alleviates | 176 |
| abstract_inverted_index.buildings. | 121 |
| abstract_inverted_index.imbalance. | 53 |
| abstract_inverted_index.inference, | 155 |
| abstract_inverted_index.isomorphic | 108 |
| abstract_inverted_index.optimizing | 197 |
| abstract_inverted_index.outperform | 149 |
| abstract_inverted_index.prevailing | 20 |
| abstract_inverted_index.structure, | 8 |
| abstract_inverted_index.validating | 193 |
| abstract_inverted_index.aggregators | 114 |
| abstract_inverted_index.alternative | 150 |
| abstract_inverted_index.approaches. | 135 |
| abstract_inverted_index.coefficient | 170 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.differences | 181 |
| abstract_inverted_index.distributed | 66 |
| abstract_inverted_index.incorporate | 73 |
| abstract_inverted_index.limitation, | 57 |
| abstract_inverted_index.management. | 18 |
| abstract_inverted_index.performance | 45 |
| abstract_inverted_index.residential | 48 |
| abstract_inverted_index.structures. | 199 |
| abstract_inverted_index.building-POI | 61 |
| abstract_inverted_index.construction | 142 |
| abstract_inverted_index.contribution | 82 |
| abstract_inverted_index.significance | 189 |
| abstract_inverted_index.supplementing | 191 |
| abstract_inverted_index.classification | 35, 100, 147 |
| abstract_inverted_index.distinguishing | 120 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109448683 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210114963 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.40141229 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |