Inferring River Channel Geometry Based on Multi-Satellite Datasets and Hydraulic Modeling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17223753
Channel geometry, e.g., riverbed elevation and channel width, is the fundamental input for hydrodynamic simulations and conveys critical information for understanding fluvial processes. In remote or data-scarce areas, however, traditional field surveys face financial and technical challenges for providing enough spatiotemporal coverage. This study proposes an innovative method integrating multi-source satellite data (Sentinel-2 and ICESat-2) and hydraulic modeling to derive channel geometry for part of the Nen River, China. Both channel width (R2 = 0.98, RMSE = 35.41 m) and bottom elevation (R2 = 0.86, RMSE = 1.77 m, PBIAS = −0.61%) are well predicted. The satellite-derived channel geometry results in an overall good simulation of 1D flows through the 5-yr period in terms of peak magnitudes and timings, with the NSE value of 0.94, RMSE of 207.76 m3/s, and PBIAS of 6.19%. The 2D inundation driven by the derived channel geometry achieved accurate hydrodynamic responses. However, for the channel bend with complicated flow regimes, the satellite-derived channel terrains tend to generate more different flow rates due to the hypothesized rectangular channel. This proposed method provides a promising way to derive river bathymetry in both low-gradient and high-slope regions where precise river topography is difficult to obtain.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17223753
- https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416321947
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416321947Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17223753Digital Object Identifier
- Title
-
Inferring River Channel Geometry Based on Multi-Satellite Datasets and Hydraulic ModelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-18Full publication date if available
- Authors
-
Youcan Feng, Xin Huang, Shaohua Zhao, Seungyub Lee, Ruiwu CaoList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17223753Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416321947 |
|---|---|
| doi | https://doi.org/10.3390/rs17223753 |
| ids.doi | https://doi.org/10.3390/rs17223753 |
| ids.openalex | https://openalex.org/W4416321947 |
| fwci | |
| type | article |
| title | Inferring River Channel Geometry Based on Multi-Satellite Datasets and Hydraulic Modeling |
| biblio.issue | 22 |
| biblio.volume | 17 |
| biblio.last_page | 3753 |
| biblio.first_page | 3753 |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| language | en |
| locations[0].id | doi:10.3390/rs17223753 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17223753 |
| locations[1].id | pmh:oai:doaj.org/article:befa903577744dbeb32feb34a370b950 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 22, p 3753 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/befa903577744dbeb32feb34a370b950 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5012860154 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3723-4201 |
| authorships[0].author.display_name | Youcan Feng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China |
| authorships[0].institutions[0].id | https://openalex.org/I194450716 |
| authorships[0].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Youcan Feng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China |
| authorships[1].author.id | https://openalex.org/A5101681502 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6132-5306 |
| authorships[1].author.display_name | Xin Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210143016 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Water Conservancy and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210143016 |
| authorships[1].institutions[0].ror | https://ror.org/03r6wam78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210143016 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Changchun Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Water Conservancy and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, China |
| authorships[2].author.id | https://openalex.org/A5046457610 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2259-8931 |
| authorships[2].author.display_name | Shaohua Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204710742, https://openalex.org/I4210158498 |
| authorships[2].affiliations[0].raw_affiliation_string | Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment/Key Laboratory of Satellite Remote Sensing, Ministry of Environmental Protection, Beijing 100094, China |
| authorships[2].institutions[0].id | https://openalex.org/I204710742 |
| authorships[2].institutions[0].ror | https://ror.org/04gwbew76 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I204710742 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ministry of Ecology and Environment |
| authorships[2].institutions[1].id | https://openalex.org/I4210158498 |
| authorships[2].institutions[1].ror | https://ror.org/04x9p9g72 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I204710742, https://openalex.org/I4210158498 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Satellite Application Center for Ecology and Environment |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaohua Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment/Key Laboratory of Satellite Remote Sensing, Ministry of Environmental Protection, Beijing 100094, China |
| authorships[3].author.id | https://openalex.org/A5082919190 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7732-6525 |
| authorships[3].author.display_name | Seungyub Lee |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I112728665 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, Hanam University, 70 Hannam-ro, Daedeok-gu, Daejeon 34430, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I112728665 |
| authorships[3].institutions[0].ror | https://ror.org/01cwbae71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I112728665 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Hannam University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Seungyub Lee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil and Environmental Engineering, Hanam University, 70 Hannam-ro, Daedeok-gu, Daejeon 34430, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5084644648 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1096-8635 |
| authorships[4].author.display_name | Ruiwu Cao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I194450716 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China |
| authorships[4].institutions[0].id | https://openalex.org/I194450716 |
| authorships[4].institutions[0].ror | https://ror.org/00js3aw79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I194450716 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jilin University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ruibo Cao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Inferring River Channel Geometry Based on Multi-Satellite Datasets and Hydraulic Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17223753 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17223753 |
| primary_location.id | doi:10.3390/rs17223753 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/22/3753/pdf?version=1763474650 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17223753 |
| publication_date | 2025-11-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 73, 76, 83, 86, 90 |
| abstract_inverted_index.a | 176 |
| abstract_inverted_index.1D | 106 |
| abstract_inverted_index.2D | 134 |
| abstract_inverted_index.In | 23 |
| abstract_inverted_index.an | 45, 101 |
| abstract_inverted_index.by | 137 |
| abstract_inverted_index.in | 100, 112, 183 |
| abstract_inverted_index.is | 8, 193 |
| abstract_inverted_index.m) | 78 |
| abstract_inverted_index.m, | 88 |
| abstract_inverted_index.of | 64, 105, 114, 123, 126, 131 |
| abstract_inverted_index.or | 25 |
| abstract_inverted_index.to | 58, 160, 167, 179, 195 |
| abstract_inverted_index.(R2 | 72, 82 |
| abstract_inverted_index.NSE | 121 |
| abstract_inverted_index.Nen | 66 |
| abstract_inverted_index.The | 95, 133 |
| abstract_inverted_index.and | 5, 15, 34, 53, 55, 79, 117, 129, 186 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.due | 166 |
| abstract_inverted_index.for | 12, 19, 37, 62, 147 |
| abstract_inverted_index.the | 9, 65, 109, 120, 138, 148, 155, 168 |
| abstract_inverted_index.way | 178 |
| abstract_inverted_index.1.77 | 87 |
| abstract_inverted_index.5-yr | 110 |
| abstract_inverted_index.Both | 69 |
| abstract_inverted_index.RMSE | 75, 85, 125 |
| abstract_inverted_index.This | 42, 172 |
| abstract_inverted_index.bend | 150 |
| abstract_inverted_index.both | 184 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.face | 32 |
| abstract_inverted_index.flow | 153, 164 |
| abstract_inverted_index.good | 103 |
| abstract_inverted_index.more | 162 |
| abstract_inverted_index.part | 63 |
| abstract_inverted_index.peak | 115 |
| abstract_inverted_index.tend | 159 |
| abstract_inverted_index.well | 93 |
| abstract_inverted_index.with | 119, 151 |
| abstract_inverted_index.0.86, | 84 |
| abstract_inverted_index.0.94, | 124 |
| abstract_inverted_index.0.98, | 74 |
| abstract_inverted_index.35.41 | 77 |
| abstract_inverted_index.PBIAS | 89, 130 |
| abstract_inverted_index.e.g., | 2 |
| abstract_inverted_index.field | 30 |
| abstract_inverted_index.flows | 107 |
| abstract_inverted_index.input | 11 |
| abstract_inverted_index.m3/s, | 128 |
| abstract_inverted_index.rates | 165 |
| abstract_inverted_index.river | 181, 191 |
| abstract_inverted_index.study | 43 |
| abstract_inverted_index.terms | 113 |
| abstract_inverted_index.value | 122 |
| abstract_inverted_index.where | 189 |
| abstract_inverted_index.width | 71 |
| abstract_inverted_index.207.76 | 127 |
| abstract_inverted_index.6.19%. | 132 |
| abstract_inverted_index.China. | 68 |
| abstract_inverted_index.River, | 67 |
| abstract_inverted_index.areas, | 27 |
| abstract_inverted_index.bottom | 80 |
| abstract_inverted_index.derive | 59, 180 |
| abstract_inverted_index.driven | 136 |
| abstract_inverted_index.enough | 39 |
| abstract_inverted_index.method | 47, 174 |
| abstract_inverted_index.period | 111 |
| abstract_inverted_index.remote | 24 |
| abstract_inverted_index.width, | 7 |
| abstract_inverted_index.Channel | 0 |
| abstract_inverted_index.channel | 6, 60, 70, 97, 140, 149, 157 |
| abstract_inverted_index.conveys | 16 |
| abstract_inverted_index.derived | 139 |
| abstract_inverted_index.fluvial | 21 |
| abstract_inverted_index.obtain. | 196 |
| abstract_inverted_index.overall | 102 |
| abstract_inverted_index.precise | 190 |
| abstract_inverted_index.regions | 188 |
| abstract_inverted_index.results | 99 |
| abstract_inverted_index.surveys | 31 |
| abstract_inverted_index.through | 108 |
| abstract_inverted_index.However, | 146 |
| abstract_inverted_index.accurate | 143 |
| abstract_inverted_index.achieved | 142 |
| abstract_inverted_index.channel. | 171 |
| abstract_inverted_index.critical | 17 |
| abstract_inverted_index.generate | 161 |
| abstract_inverted_index.geometry | 61, 98, 141 |
| abstract_inverted_index.however, | 28 |
| abstract_inverted_index.modeling | 57 |
| abstract_inverted_index.proposed | 173 |
| abstract_inverted_index.proposes | 44 |
| abstract_inverted_index.provides | 175 |
| abstract_inverted_index.regimes, | 154 |
| abstract_inverted_index.riverbed | 3 |
| abstract_inverted_index.terrains | 158 |
| abstract_inverted_index.timings, | 118 |
| abstract_inverted_index.ICESat-2) | 54 |
| abstract_inverted_index.coverage. | 41 |
| abstract_inverted_index.different | 163 |
| abstract_inverted_index.difficult | 194 |
| abstract_inverted_index.elevation | 4, 81 |
| abstract_inverted_index.financial | 33 |
| abstract_inverted_index.geometry, | 1 |
| abstract_inverted_index.hydraulic | 56 |
| abstract_inverted_index.promising | 177 |
| abstract_inverted_index.providing | 38 |
| abstract_inverted_index.satellite | 50 |
| abstract_inverted_index.technical | 35 |
| abstract_inverted_index.−0.61%) | 91 |
| abstract_inverted_index.bathymetry | 182 |
| abstract_inverted_index.challenges | 36 |
| abstract_inverted_index.high-slope | 187 |
| abstract_inverted_index.innovative | 46 |
| abstract_inverted_index.inundation | 135 |
| abstract_inverted_index.magnitudes | 116 |
| abstract_inverted_index.predicted. | 94 |
| abstract_inverted_index.processes. | 22 |
| abstract_inverted_index.responses. | 145 |
| abstract_inverted_index.simulation | 104 |
| abstract_inverted_index.topography | 192 |
| abstract_inverted_index.(Sentinel-2 | 52 |
| abstract_inverted_index.complicated | 152 |
| abstract_inverted_index.data-scarce | 26 |
| abstract_inverted_index.fundamental | 10 |
| abstract_inverted_index.information | 18 |
| abstract_inverted_index.integrating | 48 |
| abstract_inverted_index.rectangular | 170 |
| abstract_inverted_index.simulations | 14 |
| abstract_inverted_index.traditional | 29 |
| abstract_inverted_index.hydrodynamic | 13, 144 |
| abstract_inverted_index.hypothesized | 169 |
| abstract_inverted_index.low-gradient | 185 |
| abstract_inverted_index.multi-source | 49 |
| abstract_inverted_index.understanding | 20 |
| abstract_inverted_index.spatiotemporal | 40 |
| abstract_inverted_index.satellite-derived | 96, 156 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5012860154 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I194450716 |
| citation_normalized_percentile |