Influence of the Training Set Composition on the Estimation Performance of Linear ECG-Lead Transformations Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.22489/cinc.2023.263
Linear ECG-lead transformations (LELTs) are used to estimate unrecorded target leads by applying a number of recorded basis leads to a LELT matrix. Such LELT matrices are commonly developed using training datasets that are composed of ECGs that belong to different diagnostic classes (DCs). The aim of our research was to assess the influence of the training set composition on the estimation performance of LELTs that estimate target leads V1, V3, V4 and V6 from basis leads I, II, V2 and V5 of the 12-lead ECG. Our assessment was performed using ECGs from the three DCs left ventricular hypertrophy, right bundle branch block and normal (ECGs without abnormalities). Training sets with different DC compositions were used for the development of LELT matrices. These matrices were used to estimate the target leads of different test sets. The estimation performance of the developed matrices was quantified using root mean square error values calculated between derived and recorded target leads. Our findings indicate that unbalanced training sets can lead to LELTs that show large estimation performance variability across different DCs. Balanced training sets were found to produce LELTs that performed well across multiple DCs. We recommend balanced training sets for the development of LELTs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.22489/cinc.2023.263
- OA Status
- green
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390446818
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390446818Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22489/cinc.2023.263Digital Object Identifier
- Title
-
Influence of the Training Set Composition on the Estimation Performance of Linear ECG-Lead TransformationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-26Full publication date if available
- Authors
-
Daniel Guldenring, Dewar Finlay, Raymond Bond, Alan Alan Kennedy, Peter Doggart, Ghalib Janjua, James McLaughlinList of authors in order
- Landing page
-
https://doi.org/10.22489/cinc.2023.263Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://rgu-repository.worktribe.com/output/2218670Direct OA link when available
- Concepts
-
Lead (geology), Composition (language), Estimation, Set (abstract data type), Computer science, Training set, Training (meteorology), Artificial intelligence, Pattern recognition (psychology), Algorithm, Machine learning, Engineering, Geology, Systems engineering, Programming language, Meteorology, Geomorphology, Linguistics, Philosophy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390446818 |
|---|---|
| doi | https://doi.org/10.22489/cinc.2023.263 |
| ids.doi | https://doi.org/10.22489/cinc.2023.263 |
| ids.openalex | https://openalex.org/W4390446818 |
| fwci | 0.0 |
| type | article |
| title | Influence of the Training Set Composition on the Estimation Performance of Linear ECG-Lead Transformations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11032 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.887499988079071 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1708 |
| topics[0].subfield.display_name | Hardware and Architecture |
| topics[0].display_name | VLSI and Analog Circuit Testing |
| topics[1].id | https://openalex.org/T11236 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.819100022315979 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Control Systems and Identification |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.8043000102043152 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777093003 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6463843584060669 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6508345 |
| concepts[0].display_name | Lead (geology) |
| concepts[1].id | https://openalex.org/C40231798 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6191274523735046 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1333743 |
| concepts[1].display_name | Composition (language) |
| concepts[2].id | https://openalex.org/C96250715 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5970486402511597 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[2].display_name | Estimation |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.594104528427124 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5775454044342041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C51632099 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5211977362632751 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[5].display_name | Training set |
| concepts[6].id | https://openalex.org/C2777211547 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4668721854686737 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[6].display_name | Training (meteorology) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4489424526691437 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.344971239566803 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3272077441215515 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3243018388748169 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1265602707862854 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.060081660747528076 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C153294291 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[15].display_name | Meteorology |
| concepts[16].id | https://openalex.org/C114793014 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q52109 |
| concepts[16].display_name | Geomorphology |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/lead |
| keywords[0].score | 0.6463843584060669 |
| keywords[0].display_name | Lead (geology) |
| keywords[1].id | https://openalex.org/keywords/composition |
| keywords[1].score | 0.6191274523735046 |
| keywords[1].display_name | Composition (language) |
| keywords[2].id | https://openalex.org/keywords/estimation |
| keywords[2].score | 0.5970486402511597 |
| keywords[2].display_name | Estimation |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.594104528427124 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5775454044342041 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/training-set |
| keywords[5].score | 0.5211977362632751 |
| keywords[5].display_name | Training set |
| keywords[6].id | https://openalex.org/keywords/training |
| keywords[6].score | 0.4668721854686737 |
| keywords[6].display_name | Training (meteorology) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4489424526691437 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.344971239566803 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3272077441215515 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3243018388748169 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.1265602707862854 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.060081660747528076 |
| keywords[12].display_name | Geology |
| language | en |
| locations[0].id | doi:10.22489/cinc.2023.263 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4220650825 |
| locations[0].source.issn | 2325-8861, 2325-887X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2325-8861 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computing in cardiology |
| locations[0].source.host_organization | https://openalex.org/P4310320439 |
| locations[0].source.host_organization_name | IEEE Computer Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computing in Cardiology Conference (CinC) |
| locations[0].landing_page_url | http://doi.org/10.22489/cinc.2023.263 |
| locations[1].id | pmh:oai:rgu-repository.worktribe.com:2218670 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402277 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OpenAIR@RGU (Robert Gordon University) |
| locations[1].source.host_organization | https://openalex.org/I522815984 |
| locations[1].source.host_organization_name | Robert Gordon University |
| locations[1].source.host_organization_lineage | https://openalex.org/I522815984 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://rgu-repository.worktribe.com/output/2218670 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015163302 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8847-2744 |
| authorships[0].author.display_name | Daniel Guldenring |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802623092 |
| authorships[0].affiliations[0].raw_affiliation_string | HS Kempten, Kempten, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I2802623092 |
| authorships[0].institutions[0].ror | https://ror.org/02m4p8096 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802623092 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Kempten University of Applied Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Guldenring |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | HS Kempten, Kempten, Germany |
| authorships[1].author.id | https://openalex.org/A5010420002 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2628-6070 |
| authorships[1].author.display_name | Dewar Finlay |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[1].affiliations[0].raw_affiliation_string | Ulster University, Belfast, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I138801177 |
| authorships[1].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Ulster |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dewar Finlay |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ulster University, Belfast, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5067279312 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1078-2232 |
| authorships[2].author.display_name | Raymond Bond |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[2].affiliations[0].raw_affiliation_string | Ulster University, Belfast, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I138801177 |
| authorships[2].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Ulster |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Raymond Bond |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ulster University, Belfast, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5102599131 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Alan Alan Kennedy |
| authorships[3].affiliations[0].raw_affiliation_string | PulseAI Ltd, Belfast, United Kingdom |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alan Alan Kennedy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | PulseAI Ltd, Belfast, United Kingdom |
| authorships[4].author.id | https://openalex.org/A5078877515 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Peter Doggart |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[4].affiliations[0].raw_affiliation_string | Ulster University, Belfast, United Kingdom |
| authorships[4].affiliations[1].raw_affiliation_string | PulseAI Ltd, Belfast, United Kingdom |
| authorships[4].institutions[0].id | https://openalex.org/I138801177 |
| authorships[4].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Ulster |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peter Doggart |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | PulseAI Ltd, Belfast, United Kingdom, Ulster University, Belfast, United Kingdom |
| authorships[5].author.id | https://openalex.org/A5090237074 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8091-005X |
| authorships[5].author.display_name | Ghalib Janjua |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I522815984 |
| authorships[5].affiliations[0].raw_affiliation_string | Robert Gordon University, Aberdeen, United Kingdom |
| authorships[5].institutions[0].id | https://openalex.org/I522815984 |
| authorships[5].institutions[0].ror | https://ror.org/04f0qj703 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I522815984 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Robert Gordon University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ghalib Janjua |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Robert Gordon University, Aberdeen, United Kingdom |
| authorships[6].author.id | https://openalex.org/A5045151799 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6026-8971 |
| authorships[6].author.display_name | James McLaughlin |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I138801177 |
| authorships[6].affiliations[0].raw_affiliation_string | Ulster University, Belfast, United Kingdom |
| authorships[6].institutions[0].id | https://openalex.org/I138801177 |
| authorships[6].institutions[0].ror | https://ror.org/01yp9g959 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I138801177 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Ulster |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | James McLaughlin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Ulster University, Belfast, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://rgu-repository.worktribe.com/output/2218670 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Influence of the Training Set Composition on the Estimation Performance of Linear ECG-Lead Transformations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11032 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.887499988079071 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1708 |
| primary_topic.subfield.display_name | Hardware and Architecture |
| primary_topic.display_name | VLSI and Analog Circuit Testing |
| related_works | https://openalex.org/W4255463199, https://openalex.org/W2411039299, https://openalex.org/W1856410221, https://openalex.org/W230091440, https://openalex.org/W2318949977, https://openalex.org/W2334139353, https://openalex.org/W4281691423, https://openalex.org/W4243014959, https://openalex.org/W2233261550, https://openalex.org/W2551249631 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:rgu-repository.worktribe.com:2218670 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402277 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OpenAIR@RGU (Robert Gordon University) |
| best_oa_location.source.host_organization | https://openalex.org/I522815984 |
| best_oa_location.source.host_organization_name | Robert Gordon University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I522815984 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | publishedVersion |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://rgu-repository.worktribe.com/output/2218670 |
| primary_location.id | doi:10.22489/cinc.2023.263 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4220650825 |
| primary_location.source.issn | 2325-8861, 2325-887X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2325-8861 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computing in cardiology |
| primary_location.source.host_organization | https://openalex.org/P4310320439 |
| primary_location.source.host_organization_name | IEEE Computer Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320439, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Computer Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computing in Cardiology Conference (CinC) |
| primary_location.landing_page_url | http://doi.org/10.22489/cinc.2023.263 |
| publication_date | 2023-11-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2076036962, https://openalex.org/W4376504248, https://openalex.org/W2286000959, https://openalex.org/W1418754563, https://openalex.org/W1994305750, https://openalex.org/W2992941881, https://openalex.org/W3027572331, https://openalex.org/W1936273765, https://openalex.org/W2064958328, https://openalex.org/W2124215101, https://openalex.org/W2143930899, https://openalex.org/W2049508112 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 13, 20 |
| abstract_inverted_index.DC | 112 |
| abstract_inverted_index.I, | 77 |
| abstract_inverted_index.V2 | 79 |
| abstract_inverted_index.V4 | 71 |
| abstract_inverted_index.V5 | 81 |
| abstract_inverted_index.V6 | 73 |
| abstract_inverted_index.We | 191 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.of | 15, 35, 46, 54, 63, 82, 119, 131, 138, 199 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.to | 6, 19, 39, 50, 126, 166, 182 |
| abstract_inverted_index.DCs | 95 |
| abstract_inverted_index.II, | 78 |
| abstract_inverted_index.Our | 86, 157 |
| abstract_inverted_index.The | 44, 135 |
| abstract_inverted_index.V1, | 69 |
| abstract_inverted_index.V3, | 70 |
| abstract_inverted_index.aim | 45 |
| abstract_inverted_index.and | 72, 80, 103, 153 |
| abstract_inverted_index.are | 4, 26, 33 |
| abstract_inverted_index.can | 164 |
| abstract_inverted_index.for | 116, 196 |
| abstract_inverted_index.our | 47 |
| abstract_inverted_index.set | 57 |
| abstract_inverted_index.the | 52, 55, 60, 83, 93, 117, 128, 139, 197 |
| abstract_inverted_index.was | 49, 88, 142 |
| abstract_inverted_index.DCs. | 176, 190 |
| abstract_inverted_index.ECG. | 85 |
| abstract_inverted_index.ECGs | 36, 91 |
| abstract_inverted_index.LELT | 21, 24, 120 |
| abstract_inverted_index.Such | 23 |
| abstract_inverted_index.from | 74, 92 |
| abstract_inverted_index.lead | 165 |
| abstract_inverted_index.left | 96 |
| abstract_inverted_index.mean | 146 |
| abstract_inverted_index.root | 145 |
| abstract_inverted_index.sets | 109, 163, 179, 195 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.test | 133 |
| abstract_inverted_index.that | 32, 37, 65, 160, 168, 185 |
| abstract_inverted_index.used | 5, 115, 125 |
| abstract_inverted_index.well | 187 |
| abstract_inverted_index.were | 114, 124, 180 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.(ECGs | 105 |
| abstract_inverted_index.LELTs | 64, 167, 184 |
| abstract_inverted_index.These | 122 |
| abstract_inverted_index.basis | 17, 75 |
| abstract_inverted_index.block | 102 |
| abstract_inverted_index.error | 148 |
| abstract_inverted_index.found | 181 |
| abstract_inverted_index.large | 170 |
| abstract_inverted_index.leads | 10, 18, 68, 76, 130 |
| abstract_inverted_index.right | 99 |
| abstract_inverted_index.sets. | 134 |
| abstract_inverted_index.three | 94 |
| abstract_inverted_index.using | 29, 90, 144 |
| abstract_inverted_index.(DCs). | 43 |
| abstract_inverted_index.LELTs. | 200 |
| abstract_inverted_index.Linear | 0 |
| abstract_inverted_index.across | 174, 188 |
| abstract_inverted_index.assess | 51 |
| abstract_inverted_index.belong | 38 |
| abstract_inverted_index.branch | 101 |
| abstract_inverted_index.bundle | 100 |
| abstract_inverted_index.leads. | 156 |
| abstract_inverted_index.normal | 104 |
| abstract_inverted_index.number | 14 |
| abstract_inverted_index.square | 147 |
| abstract_inverted_index.target | 9, 67, 129, 155 |
| abstract_inverted_index.values | 149 |
| abstract_inverted_index.(LELTs) | 3 |
| abstract_inverted_index.12-lead | 84 |
| abstract_inverted_index.between | 151 |
| abstract_inverted_index.classes | 42 |
| abstract_inverted_index.derived | 152 |
| abstract_inverted_index.matrix. | 22 |
| abstract_inverted_index.produce | 183 |
| abstract_inverted_index.without | 106 |
| abstract_inverted_index.Balanced | 177 |
| abstract_inverted_index.ECG-lead | 1 |
| abstract_inverted_index.Training | 108 |
| abstract_inverted_index.applying | 12 |
| abstract_inverted_index.balanced | 193 |
| abstract_inverted_index.commonly | 27 |
| abstract_inverted_index.composed | 34 |
| abstract_inverted_index.datasets | 31 |
| abstract_inverted_index.estimate | 7, 66, 127 |
| abstract_inverted_index.findings | 158 |
| abstract_inverted_index.indicate | 159 |
| abstract_inverted_index.matrices | 25, 123, 141 |
| abstract_inverted_index.multiple | 189 |
| abstract_inverted_index.recorded | 16, 154 |
| abstract_inverted_index.research | 48 |
| abstract_inverted_index.training | 30, 56, 162, 178, 194 |
| abstract_inverted_index.developed | 28, 140 |
| abstract_inverted_index.different | 40, 111, 132, 175 |
| abstract_inverted_index.influence | 53 |
| abstract_inverted_index.matrices. | 121 |
| abstract_inverted_index.performed | 89, 186 |
| abstract_inverted_index.recommend | 192 |
| abstract_inverted_index.assessment | 87 |
| abstract_inverted_index.calculated | 150 |
| abstract_inverted_index.diagnostic | 41 |
| abstract_inverted_index.estimation | 61, 136, 171 |
| abstract_inverted_index.quantified | 143 |
| abstract_inverted_index.unbalanced | 161 |
| abstract_inverted_index.unrecorded | 8 |
| abstract_inverted_index.composition | 58 |
| abstract_inverted_index.development | 118, 198 |
| abstract_inverted_index.performance | 62, 137, 172 |
| abstract_inverted_index.variability | 173 |
| abstract_inverted_index.ventricular | 97 |
| abstract_inverted_index.compositions | 113 |
| abstract_inverted_index.hypertrophy, | 98 |
| abstract_inverted_index.abnormalities). | 107 |
| abstract_inverted_index.transformations | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.22644078 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |