InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.08884
Extracting meaningful latent representations from high-dimensional sequential data is a crucial challenge in machine learning, with applications spanning natural science and engineering. We introduce InfoDPCCA, a dynamic probabilistic Canonical Correlation Analysis (CCA) framework designed to model two interdependent sequences of observations. InfoDPCCA leverages a novel information-theoretic objective to extract a shared latent representation that captures the mutual structure between the data streams and balances representation compression and predictive sufficiency while also learning separate latent components that encode information specific to each sequence. Unlike prior dynamic CCA models, such as DPCCA, our approach explicitly enforces the shared latent space to encode only the mutual information between the sequences, improving interpretability and robustness. We further introduce a two-step training scheme to bridge the gap between information-theoretic representation learning and generative modeling, along with a residual connection mechanism to enhance training stability. Through experiments on synthetic and medical fMRI data, we demonstrate that InfoDPCCA excels as a tool for representation learning. Code of InfoDPCCA is available at https://github.com/marcusstang/InfoDPCCA.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.08884
- https://arxiv.org/pdf/2506.08884
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417257994
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417257994Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.08884Digital Object Identifier
- Title
-
InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-10Full publication date if available
- Authors
-
Shiqin Tang, Shujian YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.08884Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.08884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.08884Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417257994 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.08884 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.08884 |
| ids.openalex | https://openalex.org/W4417257994 |
| fwci | |
| type | preprint |
| title | InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.08884 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.08884 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.08884 |
| locations[1].id | pmh:oai:research.vu.nl:openaire/8b677902-e636-4ffd-992c-61c6f7e143f3 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401107 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | VU Research Portal |
| locations[1].source.host_organization | https://openalex.org/I865915315 |
| locations[1].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[1].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Tang, S & Yu, S 2025, 'InfoDPCCA : Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis', Proceedings of Machine Learning Research, vol. 286, pp. 4132-4142. https://doi.org/10.48550/arXiv.2506.08884 |
| locations[1].landing_page_url | https://research.vu.nl/en/publications/8b677902-e636-4ffd-992c-61c6f7e143f3 |
| locations[2].id | doi:10.48550/arxiv.2506.08884 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2506.08884 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004341643 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shiqin Tang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tang, Shiqin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041358503 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[1].author.display_name | Shujian Yu |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yu, Shujian |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.08884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | InfoDPCCA: Information-Theoretic Dynamic Probabilistic Canonical Correlation Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T00:00:00 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.08884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.08884 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.08884 |
| primary_location.id | pmh:oai:arXiv.org:2506.08884 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.08884 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.08884 |
| publication_date | 2025-06-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 25, 43, 49, 114, 131, 153 |
| abstract_inverted_index.We | 22, 111 |
| abstract_inverted_index.as | 88, 152 |
| abstract_inverted_index.at | 163 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 8, 161 |
| abstract_inverted_index.of | 39, 159 |
| abstract_inverted_index.on | 141 |
| abstract_inverted_index.to | 34, 47, 79, 98, 118, 135 |
| abstract_inverted_index.we | 147 |
| abstract_inverted_index.CCA | 85 |
| abstract_inverted_index.and | 20, 62, 66, 109, 126, 143 |
| abstract_inverted_index.for | 155 |
| abstract_inverted_index.gap | 121 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.the | 55, 59, 94, 101, 105, 120 |
| abstract_inverted_index.two | 36 |
| abstract_inverted_index.Code | 158 |
| abstract_inverted_index.also | 70 |
| abstract_inverted_index.data | 7, 60 |
| abstract_inverted_index.each | 80 |
| abstract_inverted_index.fMRI | 145 |
| abstract_inverted_index.from | 4 |
| abstract_inverted_index.only | 100 |
| abstract_inverted_index.such | 87 |
| abstract_inverted_index.that | 53, 75, 149 |
| abstract_inverted_index.tool | 154 |
| abstract_inverted_index.with | 15, 130 |
| abstract_inverted_index.(CCA) | 31 |
| abstract_inverted_index.along | 129 |
| abstract_inverted_index.data, | 146 |
| abstract_inverted_index.model | 35 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.prior | 83 |
| abstract_inverted_index.space | 97 |
| abstract_inverted_index.while | 69 |
| abstract_inverted_index.DPCCA, | 89 |
| abstract_inverted_index.Unlike | 82 |
| abstract_inverted_index.bridge | 119 |
| abstract_inverted_index.encode | 76, 99 |
| abstract_inverted_index.excels | 151 |
| abstract_inverted_index.latent | 2, 51, 73, 96 |
| abstract_inverted_index.mutual | 56, 102 |
| abstract_inverted_index.scheme | 117 |
| abstract_inverted_index.shared | 50, 95 |
| abstract_inverted_index.Through | 139 |
| abstract_inverted_index.between | 58, 104, 122 |
| abstract_inverted_index.crucial | 10 |
| abstract_inverted_index.dynamic | 26, 84 |
| abstract_inverted_index.enhance | 136 |
| abstract_inverted_index.extract | 48 |
| abstract_inverted_index.further | 112 |
| abstract_inverted_index.machine | 13 |
| abstract_inverted_index.medical | 144 |
| abstract_inverted_index.models, | 86 |
| abstract_inverted_index.natural | 18 |
| abstract_inverted_index.science | 19 |
| abstract_inverted_index.streams | 61 |
| abstract_inverted_index.Analysis | 30 |
| abstract_inverted_index.approach | 91 |
| abstract_inverted_index.balances | 63 |
| abstract_inverted_index.captures | 54 |
| abstract_inverted_index.designed | 33 |
| abstract_inverted_index.enforces | 93 |
| abstract_inverted_index.learning | 71, 125 |
| abstract_inverted_index.residual | 132 |
| abstract_inverted_index.separate | 72 |
| abstract_inverted_index.spanning | 17 |
| abstract_inverted_index.specific | 78 |
| abstract_inverted_index.training | 116, 137 |
| abstract_inverted_index.two-step | 115 |
| abstract_inverted_index.Canonical | 28 |
| abstract_inverted_index.InfoDPCCA | 41, 150, 160 |
| abstract_inverted_index.available | 162 |
| abstract_inverted_index.challenge | 11 |
| abstract_inverted_index.framework | 32 |
| abstract_inverted_index.improving | 107 |
| abstract_inverted_index.introduce | 23, 113 |
| abstract_inverted_index.learning, | 14 |
| abstract_inverted_index.learning. | 157 |
| abstract_inverted_index.leverages | 42 |
| abstract_inverted_index.mechanism | 134 |
| abstract_inverted_index.modeling, | 128 |
| abstract_inverted_index.objective | 46 |
| abstract_inverted_index.sequence. | 81 |
| abstract_inverted_index.sequences | 38 |
| abstract_inverted_index.structure | 57 |
| abstract_inverted_index.synthetic | 142 |
| abstract_inverted_index.Extracting | 0 |
| abstract_inverted_index.InfoDPCCA, | 24 |
| abstract_inverted_index.components | 74 |
| abstract_inverted_index.connection | 133 |
| abstract_inverted_index.explicitly | 92 |
| abstract_inverted_index.generative | 127 |
| abstract_inverted_index.meaningful | 1 |
| abstract_inverted_index.predictive | 67 |
| abstract_inverted_index.sequences, | 106 |
| abstract_inverted_index.sequential | 6 |
| abstract_inverted_index.stability. | 138 |
| abstract_inverted_index.Correlation | 29 |
| abstract_inverted_index.compression | 65 |
| abstract_inverted_index.demonstrate | 148 |
| abstract_inverted_index.experiments | 140 |
| abstract_inverted_index.information | 77, 103 |
| abstract_inverted_index.robustness. | 110 |
| abstract_inverted_index.sufficiency | 68 |
| abstract_inverted_index.applications | 16 |
| abstract_inverted_index.engineering. | 21 |
| abstract_inverted_index.observations. | 40 |
| abstract_inverted_index.probabilistic | 27 |
| abstract_inverted_index.interdependent | 37 |
| abstract_inverted_index.representation | 52, 64, 124, 156 |
| abstract_inverted_index.representations | 3 |
| abstract_inverted_index.high-dimensional | 5 |
| abstract_inverted_index.interpretability | 108 |
| abstract_inverted_index.information-theoretic | 45, 123 |
| abstract_inverted_index.https://github.com/marcusstang/InfoDPCCA. | 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |