Information Graphs Incorporating Predictive Values of Disease Forecasts Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/e22030361
Diagrammatic formats are useful for summarizing the processes of evaluation and comparison of forecasts in plant pathology and other disciplines where decisions about interventions for the purpose of disease management are often based on a proxy risk variable. We describe a new diagrammatic format for disease forecasts with two categories of actual status and two categories of forecast. The format displays relative entropies, functions of the predictive values that characterize expected information provided by disease forecasts. The new format arises from a consideration of earlier formats with underlying information properties that were previously unexploited. The new diagrammatic format requires no additional data for calculation beyond those used for the calculation of a receiver operating characteristic (ROC) curve. While an ROC curve characterizes a forecast in terms of sensitivity and specificity, the new format described here characterizes a forecast in terms of relative entropies based on predictive values. Thus it is complementary to ROC methodology in its application to the evaluation and comparison of forecasts.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e22030361
- https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512
- OA Status
- gold
- Cited By
- 5
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3011930422
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3011930422Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e22030361Digital Object Identifier
- Title
-
Information Graphs Incorporating Predictive Values of Disease ForecastsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-20Full publication date if available
- Authors
-
G. Hughes, Jennifer L. Reed, N. McRobertsList of authors in order
- Landing page
-
https://doi.org/10.3390/e22030361Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512Direct OA link when available
- Concepts
-
Diagrammatic reasoning, Receiver operating characteristic, Proxy (statistics), Computer science, Variable (mathematics), Data mining, Econometrics, Machine learning, Mathematics, Mathematical analysis, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2021: 1, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3011930422 |
|---|---|
| doi | https://doi.org/10.3390/e22030361 |
| ids.doi | https://doi.org/10.3390/e22030361 |
| ids.mag | 3011930422 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33286135 |
| ids.openalex | https://openalex.org/W3011930422 |
| fwci | 0.68186211 |
| type | article |
| title | Information Graphs Incorporating Predictive Values of Disease Forecasts |
| biblio.issue | 3 |
| biblio.volume | 22 |
| biblio.last_page | 361 |
| biblio.first_page | 361 |
| topics[0].id | https://openalex.org/T10733 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9718000292778015 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Wheat and Barley Genetics and Pathology |
| topics[1].id | https://openalex.org/T11771 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.967199981212616 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Pathogens and Resistance |
| topics[2].id | https://openalex.org/T11578 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Pathogenic Bacteria Studies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C106624574 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8432934284210205 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5270387 |
| concepts[0].display_name | Diagrammatic reasoning |
| concepts[1].id | https://openalex.org/C58471807 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5770426988601685 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[1].display_name | Receiver operating characteristic |
| concepts[2].id | https://openalex.org/C2780148112 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5738619565963745 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1432581 |
| concepts[2].display_name | Proxy (statistics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5659142732620239 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C182365436 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4591076374053955 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[4].display_name | Variable (mathematics) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42046689987182617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3899015188217163 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3160882294178009 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27154552936553955 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/diagrammatic-reasoning |
| keywords[0].score | 0.8432934284210205 |
| keywords[0].display_name | Diagrammatic reasoning |
| keywords[1].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[1].score | 0.5770426988601685 |
| keywords[1].display_name | Receiver operating characteristic |
| keywords[2].id | https://openalex.org/keywords/proxy |
| keywords[2].score | 0.5738619565963745 |
| keywords[2].display_name | Proxy (statistics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5659142732620239 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/variable |
| keywords[4].score | 0.4591076374053955 |
| keywords[4].display_name | Variable (mathematics) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.42046689987182617 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.3899015188217163 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3160882294178009 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.27154552936553955 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/e22030361 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e22030361 |
| locations[1].id | pmid:33286135 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33286135 |
| locations[2].id | pmh:oai:escholarship.org:ark:/13030/qt6719t6d0 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://escholarship.org/uc/item/6719t6d0 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, vol 22, iss 3 |
| locations[2].landing_page_url | https://escholarship.org/uc/item/6719t6d0 |
| locations[3].id | pmh:oai:doaj.org/article:f75ac261614644f690fa41d179d56d92 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy, Vol 22, Iss 3, p 361 (2020) |
| locations[3].landing_page_url | https://doaj.org/article/f75ac261614644f690fa41d179d56d92 |
| locations[4].id | pmh:oai:mdpi.com:/1099-4300/22/3/361/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy |
| locations[4].landing_page_url | http://dx.doi.org/10.3390/e22030361 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:7516835 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Entropy (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7516835 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101806699 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8552-1195 |
| authorships[0].author.display_name | G. Hughes |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I260719752 |
| authorships[0].affiliations[0].raw_affiliation_string | SRUC, The King's Buildings, Edinburgh EH9 3JG, UK |
| authorships[0].institutions[0].id | https://openalex.org/I260719752 |
| authorships[0].institutions[0].ror | https://ror.org/044e2ja82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I260719752 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Scotland's Rural College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gareth Hughes |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | SRUC, The King's Buildings, Edinburgh EH9 3JG, UK |
| authorships[1].author.id | https://openalex.org/A5059438505 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7854-6220 |
| authorships[1].author.display_name | Jennifer L. Reed |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Plant Pathology, University of California, Davis, CA 95616, USA |
| authorships[1].institutions[0].id | https://openalex.org/I84218800 |
| authorships[1].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Davis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jennifer Reed |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Plant Pathology, University of California, Davis, CA 95616, USA |
| authorships[2].author.id | https://openalex.org/A5005187112 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6346-9461 |
| authorships[2].author.display_name | N. McRoberts |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Plant Pathology, University of California, Davis, CA 95616, USA |
| authorships[2].institutions[0].id | https://openalex.org/I84218800 |
| authorships[2].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Davis |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Neil McRoberts |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Plant Pathology, University of California, Davis, CA 95616, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Information Graphs Incorporating Predictive Values of Disease Forecasts |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10733 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9718000292778015 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Wheat and Barley Genetics and Pathology |
| related_works | https://openalex.org/W3003518673, https://openalex.org/W2243494072, https://openalex.org/W3083799684, https://openalex.org/W4288417689, https://openalex.org/W1588273335, https://openalex.org/W2933723564, https://openalex.org/W1582653816, https://openalex.org/W4233209174, https://openalex.org/W3036486735, https://openalex.org/W4388991336 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/e22030361 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e22030361 |
| primary_location.id | doi:10.3390/e22030361 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/22/3/361/pdf?version=1585277512 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e22030361 |
| publication_date | 2020-03-20 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2033326122, https://openalex.org/W2075066026, https://openalex.org/W1988156060, https://openalex.org/W1967484300, https://openalex.org/W2613099944, https://openalex.org/W4256077087, https://openalex.org/W2094871451, https://openalex.org/W2027323362, https://openalex.org/W2000633557, https://openalex.org/W2018882317, https://openalex.org/W2167840843, https://openalex.org/W2126025525, https://openalex.org/W2126436234, https://openalex.org/W2611947862, https://openalex.org/W2073241381, https://openalex.org/W2135773367, https://openalex.org/W2284322480, https://openalex.org/W2166343608 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 34, 40, 81, 111, 122, 136 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.an | 118 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 14, 124, 138, 154 |
| abstract_inverted_index.is | 149 |
| abstract_inverted_index.it | 148 |
| abstract_inverted_index.no | 99 |
| abstract_inverted_index.of | 8, 12, 27, 50, 56, 64, 83, 110, 126, 140, 162 |
| abstract_inverted_index.on | 33, 144 |
| abstract_inverted_index.to | 151, 157 |
| abstract_inverted_index.ROC | 119, 152 |
| abstract_inverted_index.The | 58, 76, 94 |
| abstract_inverted_index.and | 10, 17, 53, 128, 160 |
| abstract_inverted_index.are | 2, 30 |
| abstract_inverted_index.for | 4, 24, 44, 102, 107 |
| abstract_inverted_index.its | 155 |
| abstract_inverted_index.new | 41, 77, 95, 131 |
| abstract_inverted_index.the | 6, 25, 65, 108, 130, 158 |
| abstract_inverted_index.two | 48, 54 |
| abstract_inverted_index.Thus | 147 |
| abstract_inverted_index.data | 101 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.here | 134 |
| abstract_inverted_index.risk | 36 |
| abstract_inverted_index.that | 68, 90 |
| abstract_inverted_index.used | 106 |
| abstract_inverted_index.were | 91 |
| abstract_inverted_index.with | 47, 86 |
| abstract_inverted_index.(ROC) | 115 |
| abstract_inverted_index.While | 117 |
| abstract_inverted_index.about | 22 |
| abstract_inverted_index.based | 32, 143 |
| abstract_inverted_index.curve | 120 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.other | 18 |
| abstract_inverted_index.plant | 15 |
| abstract_inverted_index.proxy | 35 |
| abstract_inverted_index.terms | 125, 139 |
| abstract_inverted_index.those | 105 |
| abstract_inverted_index.where | 20 |
| abstract_inverted_index.actual | 51 |
| abstract_inverted_index.arises | 79 |
| abstract_inverted_index.beyond | 104 |
| abstract_inverted_index.curve. | 116 |
| abstract_inverted_index.format | 43, 59, 78, 97, 132 |
| abstract_inverted_index.status | 52 |
| abstract_inverted_index.useful | 3 |
| abstract_inverted_index.values | 67 |
| abstract_inverted_index.disease | 28, 45, 74 |
| abstract_inverted_index.earlier | 84 |
| abstract_inverted_index.formats | 1, 85 |
| abstract_inverted_index.purpose | 26 |
| abstract_inverted_index.values. | 146 |
| abstract_inverted_index.describe | 39 |
| abstract_inverted_index.displays | 60 |
| abstract_inverted_index.expected | 70 |
| abstract_inverted_index.forecast | 123, 137 |
| abstract_inverted_index.provided | 72 |
| abstract_inverted_index.receiver | 112 |
| abstract_inverted_index.relative | 61, 141 |
| abstract_inverted_index.requires | 98 |
| abstract_inverted_index.decisions | 21 |
| abstract_inverted_index.described | 133 |
| abstract_inverted_index.entropies | 142 |
| abstract_inverted_index.forecast. | 57 |
| abstract_inverted_index.forecasts | 13, 46 |
| abstract_inverted_index.functions | 63 |
| abstract_inverted_index.operating | 113 |
| abstract_inverted_index.pathology | 16 |
| abstract_inverted_index.processes | 7 |
| abstract_inverted_index.variable. | 37 |
| abstract_inverted_index.additional | 100 |
| abstract_inverted_index.categories | 49, 55 |
| abstract_inverted_index.comparison | 11, 161 |
| abstract_inverted_index.entropies, | 62 |
| abstract_inverted_index.evaluation | 9, 159 |
| abstract_inverted_index.forecasts. | 75, 163 |
| abstract_inverted_index.management | 29 |
| abstract_inverted_index.predictive | 66, 145 |
| abstract_inverted_index.previously | 92 |
| abstract_inverted_index.properties | 89 |
| abstract_inverted_index.underlying | 87 |
| abstract_inverted_index.application | 156 |
| abstract_inverted_index.calculation | 103, 109 |
| abstract_inverted_index.disciplines | 19 |
| abstract_inverted_index.information | 71, 88 |
| abstract_inverted_index.methodology | 153 |
| abstract_inverted_index.sensitivity | 127 |
| abstract_inverted_index.summarizing | 5 |
| abstract_inverted_index.Diagrammatic | 0 |
| abstract_inverted_index.characterize | 69 |
| abstract_inverted_index.diagrammatic | 42, 96 |
| abstract_inverted_index.specificity, | 129 |
| abstract_inverted_index.unexploited. | 93 |
| abstract_inverted_index.characterizes | 121, 135 |
| abstract_inverted_index.complementary | 150 |
| abstract_inverted_index.consideration | 82 |
| abstract_inverted_index.interventions | 23 |
| abstract_inverted_index.characteristic | 114 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101806699 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I260719752 |
| citation_normalized_percentile.value | 0.80359091 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |