Information-theoretical analysis of statistical measures for multiscale dynamics Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.01930
Multiscale entropy (MSE) has been widely used to examine nonlinear systems involving multiple time scales, such as biological and economic systems. Conversely, Allan variance has been used to evaluate the stability of oscillators, such as clocks and lasers, ranging from short to long time scales. Although these two statistical measures were developed independently for different purposes in different fields in the literature, their interest is to examine multiscale temporal structures of physical phenomena under study. We show that, from an information-theoretical perspective, they share some foundations and exhibit similar tendencies. We experimentally confirmed that similar properties of the MSE and Allan variance can be observed in low-frequency fluctuations (LFF) in chaotic lasers and physiological heartbeat data. Furthermore, we calculated the condition under which this consistency between the MSE and Allan variance exists, which is related to certain conditional probabilities. Heuristically, physical systems in nature including the aforementioned LFF and heartbeat data mostly satisfy this condition, and hence the MSE and Allan variance demonstrate similar properties. As a counterexample, an artificially constructed random sequence is demonstrated, for which the MSE and Allan variance exhibit different trends.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.01930
- https://arxiv.org/pdf/2301.01930
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313680246
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313680246Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.01930Digital Object Identifier
- Title
-
Information-theoretical analysis of statistical measures for multiscale dynamicsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-05Full publication date if available
- Authors
-
Naoki Asuke, Tomoki Yamagami, Takatomo Mihana, André Röhm, Ryoichi Horisaki, Makoto NaruseList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.01930Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.01930Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.01930Direct OA link when available
- Concepts
-
Allan variance, Statistical physics, Heartbeat, Variance (accounting), Stability (learning theory), Chaotic, Entropy (arrow of time), Nonlinear system, Mathematics, Statistics, Computer science, Algorithm, Artificial intelligence, Physics, Standard deviation, Machine learning, Accounting, Quantum mechanics, Computer security, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313680246 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.01930 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.01930 |
| ids.openalex | https://openalex.org/W4313680246 |
| fwci | 0.0 |
| type | preprint |
| title | Information-theoretical analysis of statistical measures for multiscale dynamics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11270 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9883999824523926 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Complex Systems and Time Series Analysis |
| topics[1].id | https://openalex.org/T10244 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9585999846458435 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Chaos control and synchronization |
| topics[2].id | https://openalex.org/T11187 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9563999772071838 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Nonlinear Dynamics and Pattern Formation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C5722023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9070312976837158 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1440227 |
| concepts[0].display_name | Allan variance |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.618040919303894 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C13852961 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5625973343849182 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17021880 |
| concepts[2].display_name | Heartbeat |
| concepts[3].id | https://openalex.org/C196083921 |
| concepts[3].level | 2 |
| concepts[3].score | 0.528763473033905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[3].display_name | Variance (accounting) |
| concepts[4].id | https://openalex.org/C112972136 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4699098467826843 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[4].display_name | Stability (learning theory) |
| concepts[5].id | https://openalex.org/C2777052490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4640566110610962 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5072826 |
| concepts[5].display_name | Chaotic |
| concepts[6].id | https://openalex.org/C106301342 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45411941409111023 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[6].display_name | Entropy (arrow of time) |
| concepts[7].id | https://openalex.org/C158622935 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43718957901000977 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[7].display_name | Nonlinear system |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4209522008895874 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38739538192749023 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3852233290672302 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32666316628456116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22493425011634827 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12743455171585083 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C22679943 |
| concepts[14].level | 2 |
| concepts[14].score | 0.12468257546424866 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[14].display_name | Standard deviation |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11933153867721558 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C121955636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[16].display_name | Accounting |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/allan-variance |
| keywords[0].score | 0.9070312976837158 |
| keywords[0].display_name | Allan variance |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.618040919303894 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/heartbeat |
| keywords[2].score | 0.5625973343849182 |
| keywords[2].display_name | Heartbeat |
| keywords[3].id | https://openalex.org/keywords/variance |
| keywords[3].score | 0.528763473033905 |
| keywords[3].display_name | Variance (accounting) |
| keywords[4].id | https://openalex.org/keywords/stability |
| keywords[4].score | 0.4699098467826843 |
| keywords[4].display_name | Stability (learning theory) |
| keywords[5].id | https://openalex.org/keywords/chaotic |
| keywords[5].score | 0.4640566110610962 |
| keywords[5].display_name | Chaotic |
| keywords[6].id | https://openalex.org/keywords/entropy |
| keywords[6].score | 0.45411941409111023 |
| keywords[6].display_name | Entropy (arrow of time) |
| keywords[7].id | https://openalex.org/keywords/nonlinear-system |
| keywords[7].score | 0.43718957901000977 |
| keywords[7].display_name | Nonlinear system |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4209522008895874 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.38739538192749023 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3852233290672302 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.32666316628456116 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.22493425011634827 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.12743455171585083 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/standard-deviation |
| keywords[14].score | 0.12468257546424866 |
| keywords[14].display_name | Standard deviation |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.11933153867721558 |
| keywords[15].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.01930 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.01930 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.01930 |
| locations[1].id | doi:10.48550/arxiv.2301.01930 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.01930 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080549625 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7524-7070 |
| authorships[0].author.display_name | Naoki Asuke |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Asuke, Naoki |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5011553646 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3003-1935 |
| authorships[1].author.display_name | Tomoki Yamagami |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yamagami, Tomoki |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037104196 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4390-710X |
| authorships[2].author.display_name | Takatomo Mihana |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mihana, Takatomo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035758894 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8552-7922 |
| authorships[3].author.display_name | André Röhm |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Röhm, André |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5006017403 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2280-5921 |
| authorships[4].author.display_name | Ryoichi Horisaki |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Horisaki, Ryoichi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002483949 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8982-9824 |
| authorships[5].author.display_name | Makoto Naruse |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Naruse, Makoto |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.01930 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Information-theoretical analysis of statistical measures for multiscale dynamics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11270 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9883999824523926 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Complex Systems and Time Series Analysis |
| related_works | https://openalex.org/W2755914447, https://openalex.org/W4385543909, https://openalex.org/W3039320222, https://openalex.org/W2010494064, https://openalex.org/W3199640442, https://openalex.org/W1898280036, https://openalex.org/W2125072374, https://openalex.org/W2553054641, https://openalex.org/W3017938166, https://openalex.org/W2112136250 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.01930 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.01930 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.01930 |
| primary_location.id | pmh:oai:arXiv.org:2301.01930 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.01930 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.01930 |
| publication_date | 2023-01-05 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 166 |
| abstract_inverted_index.As | 165 |
| abstract_inverted_index.We | 75, 90 |
| abstract_inverted_index.an | 79, 168 |
| abstract_inverted_index.as | 16, 34 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.in | 56, 59, 105, 109, 142 |
| abstract_inverted_index.is | 64, 133, 173 |
| abstract_inverted_index.of | 31, 70, 96 |
| abstract_inverted_index.to | 7, 27, 41, 65, 135 |
| abstract_inverted_index.we | 117 |
| abstract_inverted_index.LFF | 147 |
| abstract_inverted_index.MSE | 98, 127, 158, 178 |
| abstract_inverted_index.and | 18, 36, 86, 99, 112, 128, 148, 155, 159, 179 |
| abstract_inverted_index.can | 102 |
| abstract_inverted_index.for | 53, 175 |
| abstract_inverted_index.has | 3, 24 |
| abstract_inverted_index.the | 29, 60, 97, 119, 126, 145, 157, 177 |
| abstract_inverted_index.two | 47 |
| abstract_inverted_index.been | 4, 25 |
| abstract_inverted_index.data | 150 |
| abstract_inverted_index.from | 39, 78 |
| abstract_inverted_index.long | 42 |
| abstract_inverted_index.show | 76 |
| abstract_inverted_index.some | 84 |
| abstract_inverted_index.such | 15, 33 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.they | 82 |
| abstract_inverted_index.this | 123, 153 |
| abstract_inverted_index.time | 13, 43 |
| abstract_inverted_index.used | 6, 26 |
| abstract_inverted_index.were | 50 |
| abstract_inverted_index.(LFF) | 108 |
| abstract_inverted_index.(MSE) | 2 |
| abstract_inverted_index.Allan | 22, 100, 129, 160, 180 |
| abstract_inverted_index.data. | 115 |
| abstract_inverted_index.hence | 156 |
| abstract_inverted_index.share | 83 |
| abstract_inverted_index.short | 40 |
| abstract_inverted_index.that, | 77 |
| abstract_inverted_index.their | 62 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.under | 73, 121 |
| abstract_inverted_index.which | 122, 132, 176 |
| abstract_inverted_index.clocks | 35 |
| abstract_inverted_index.fields | 58 |
| abstract_inverted_index.lasers | 111 |
| abstract_inverted_index.mostly | 151 |
| abstract_inverted_index.nature | 143 |
| abstract_inverted_index.random | 171 |
| abstract_inverted_index.study. | 74 |
| abstract_inverted_index.widely | 5 |
| abstract_inverted_index.between | 125 |
| abstract_inverted_index.certain | 136 |
| abstract_inverted_index.chaotic | 110 |
| abstract_inverted_index.entropy | 1 |
| abstract_inverted_index.examine | 8, 66 |
| abstract_inverted_index.exhibit | 87, 182 |
| abstract_inverted_index.exists, | 131 |
| abstract_inverted_index.lasers, | 37 |
| abstract_inverted_index.ranging | 38 |
| abstract_inverted_index.related | 134 |
| abstract_inverted_index.satisfy | 152 |
| abstract_inverted_index.scales, | 14 |
| abstract_inverted_index.scales. | 44 |
| abstract_inverted_index.similar | 88, 94, 163 |
| abstract_inverted_index.systems | 10, 141 |
| abstract_inverted_index.trends. | 184 |
| abstract_inverted_index.Although | 45 |
| abstract_inverted_index.economic | 19 |
| abstract_inverted_index.evaluate | 28 |
| abstract_inverted_index.interest | 63 |
| abstract_inverted_index.measures | 49 |
| abstract_inverted_index.multiple | 12 |
| abstract_inverted_index.observed | 104 |
| abstract_inverted_index.physical | 71, 140 |
| abstract_inverted_index.purposes | 55 |
| abstract_inverted_index.sequence | 172 |
| abstract_inverted_index.systems. | 20 |
| abstract_inverted_index.temporal | 68 |
| abstract_inverted_index.variance | 23, 101, 130, 161, 181 |
| abstract_inverted_index.condition | 120 |
| abstract_inverted_index.confirmed | 92 |
| abstract_inverted_index.developed | 51 |
| abstract_inverted_index.different | 54, 57, 183 |
| abstract_inverted_index.heartbeat | 114, 149 |
| abstract_inverted_index.including | 144 |
| abstract_inverted_index.involving | 11 |
| abstract_inverted_index.nonlinear | 9 |
| abstract_inverted_index.phenomena | 72 |
| abstract_inverted_index.stability | 30 |
| abstract_inverted_index.Multiscale | 0 |
| abstract_inverted_index.biological | 17 |
| abstract_inverted_index.calculated | 118 |
| abstract_inverted_index.condition, | 154 |
| abstract_inverted_index.multiscale | 67 |
| abstract_inverted_index.properties | 95 |
| abstract_inverted_index.structures | 69 |
| abstract_inverted_index.Conversely, | 21 |
| abstract_inverted_index.conditional | 137 |
| abstract_inverted_index.consistency | 124 |
| abstract_inverted_index.constructed | 170 |
| abstract_inverted_index.demonstrate | 162 |
| abstract_inverted_index.foundations | 85 |
| abstract_inverted_index.literature, | 61 |
| abstract_inverted_index.properties. | 164 |
| abstract_inverted_index.statistical | 48 |
| abstract_inverted_index.tendencies. | 89 |
| abstract_inverted_index.Furthermore, | 116 |
| abstract_inverted_index.artificially | 169 |
| abstract_inverted_index.fluctuations | 107 |
| abstract_inverted_index.oscillators, | 32 |
| abstract_inverted_index.perspective, | 81 |
| abstract_inverted_index.demonstrated, | 174 |
| abstract_inverted_index.independently | 52 |
| abstract_inverted_index.low-frequency | 106 |
| abstract_inverted_index.physiological | 113 |
| abstract_inverted_index.Heuristically, | 139 |
| abstract_inverted_index.aforementioned | 146 |
| abstract_inverted_index.experimentally | 91 |
| abstract_inverted_index.probabilities. | 138 |
| abstract_inverted_index.counterexample, | 167 |
| abstract_inverted_index.information-theoretical | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.00362416 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |