Information Theory Considerations In Patch-Based Training Of Deep Neural Networks On Seismic Time-Series Article Swipe
Jesper Dramsch
,
Mikael Lüthje
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3997/2214-4609.201803020
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.3997/2214-4609.201803020
Recent advances in machine learning relies on convolutional deep neural networks. These are often trained on cropped image patches. Pertaining to non-stationary seismic signals this may introduce low frequency noise and non-generalizability.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3997/2214-4609.201803020
- OA Status
- green
- Cited By
- 2
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2901529496
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2901529496Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3997/2214-4609.201803020Digital Object Identifier
- Title
-
Information Theory Considerations In Patch-Based Training Of Deep Neural Networks On Seismic Time-SeriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-14Full publication date if available
- Authors
-
Jesper Dramsch, Mikael LüthjeList of authors in order
- Landing page
-
https://doi.org/10.3997/2214-4609.201803020Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/poster/Information_Theory_Considerations_In_Patch-Based_Training_Of_Deep_Neural_Networks_On_Seismic_Time-Series/7421474Direct OA link when available
- Concepts
-
Computer science, Series (stratigraphy), Artificial neural network, Time series, Artificial intelligence, Training (meteorology), Machine learning, Data mining, Geology, Physics, Paleontology, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2901529496 |
|---|---|
| doi | https://doi.org/10.3997/2214-4609.201803020 |
| ids.doi | https://doi.org/10.3997/2214-4609.201803020 |
| ids.mag | 2901529496 |
| ids.openalex | https://openalex.org/W2901529496 |
| fwci | 0.18857276 |
| type | article |
| title | Information Theory Considerations In Patch-Based Training Of Deep Neural Networks On Seismic Time-Series |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10271 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Seismic Imaging and Inversion Techniques |
| topics[1].id | https://openalex.org/T11801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Reservoir Engineering and Simulation Methods |
| topics[2].id | https://openalex.org/T13018 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Seismology and Earthquake Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6808255910873413 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6683365702629089 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6554400324821472 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C151406439 |
| concepts[3].level | 2 |
| concepts[3].score | 0.556084156036377 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[3].display_name | Time series |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4618149995803833 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2777211547 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4163416624069214 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[5].display_name | Training (meteorology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4009651243686676 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33452385663986206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23284122347831726 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| concepts[11].id | https://openalex.org/C153294291 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[11].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6808255910873413 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.6683365702629089 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6554400324821472 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/time-series |
| keywords[3].score | 0.556084156036377 |
| keywords[3].display_name | Time series |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4618149995803833 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/training |
| keywords[5].score | 0.4163416624069214 |
| keywords[5].display_name | Training (meteorology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4009651243686676 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.33452385663986206 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.23284122347831726 |
| keywords[8].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3997/2214-4609.201803020 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4220650854 |
| locations[0].source.issn | 2214-4609 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2214-4609 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings |
| locations[0].landing_page_url | https://doi.org/10.3997/2214-4609.201803020 |
| locations[1].id | pmh:oai:figshare.com:article/7421474 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Image |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/poster/Information_Theory_Considerations_In_Patch-Based_Training_Of_Deep_Neural_Networks_On_Seismic_Time-Series/7421474 |
| locations[2].id | pmh:oai:pure.atira.dk:publications/8d0b5553-3543-454a-b495-bb42ae3429a9 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400216 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Research Portal (King's College London) |
| locations[2].source.host_organization | https://openalex.org/I183935753 |
| locations[2].source.host_organization_name | King's College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | contributionToPeriodical |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sören Dramsch , J & Lüthje , M 2018 , Information Theory Considerations in Patch-based Training of Deep Neural Networks on Seismic Time-Series . in Proceedings of the First EAGE/PESGB Workshop on Machine Learning (London2018) . European Association of Geoscientists and Engineers , pp. 46-48 , First EAGE/PESGB Workshop Machine Learning , London , United Kingdom , 29/11/2018 . https://doi.org/10.3997/2214-4609.201803020 |
| locations[2].landing_page_url | https://orbit.dtu.dk/en/publications/8d0b5553-3543-454a-b495-bb42ae3429a9 |
| locations[3].id | doi:10.6084/m9.figshare.7421474.v1 |
| locations[3].is_oa | True |
| locations[3].source | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | graphic |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.6084/m9.figshare.7421474.v1 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5088118543 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8273-905X |
| authorships[0].author.display_name | Jesper Dramsch |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[0].affiliations[0].raw_affiliation_string | Technical University Of Denmark |
| authorships[0].institutions[0].id | https://openalex.org/I96673099 |
| authorships[0].institutions[0].ror | https://ror.org/04qtj9h94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I96673099 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Technical University of Denmark |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J.S. Dramsch |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Technical University Of Denmark |
| authorships[1].author.id | https://openalex.org/A5039542932 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2715-1653 |
| authorships[1].author.display_name | Mikael Lüthje |
| authorships[1].countries | DK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[1].affiliations[0].raw_affiliation_string | Technical University Of Denmark |
| authorships[1].institutions[0].id | https://openalex.org/I96673099 |
| authorships[1].institutions[0].ror | https://ror.org/04qtj9h94 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I96673099 |
| authorships[1].institutions[0].country_code | DK |
| authorships[1].institutions[0].display_name | Technical University of Denmark |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | M. Lüthje |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technical University Of Denmark |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/poster/Information_Theory_Considerations_In_Patch-Based_Training_Of_Deep_Neural_Networks_On_Seismic_Time-Series/7421474 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Information Theory Considerations In Patch-Based Training Of Deep Neural Networks On Seismic Time-Series |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10271 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Seismic Imaging and Inversion Techniques |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2997094352, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W3146111732, https://openalex.org/W1990205660 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:figshare.com:article/7421474 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Image |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://figshare.com/articles/poster/Information_Theory_Considerations_In_Patch-Based_Training_Of_Deep_Neural_Networks_On_Seismic_Time-Series/7421474 |
| primary_location.id | doi:10.3997/2214-4609.201803020 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4220650854 |
| primary_location.source.issn | 2214-4609 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2214-4609 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings |
| primary_location.landing_page_url | https://doi.org/10.3997/2214-4609.201803020 |
| publication_date | 2018-11-14 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2108598243, https://openalex.org/W4320909274, https://openalex.org/W2099081746, https://openalex.org/W2493745289, https://openalex.org/W2112016429 |
| referenced_works_count | 5 |
| abstract_inverted_index.in | 2 |
| abstract_inverted_index.on | 6, 15 |
| abstract_inverted_index.to | 20 |
| abstract_inverted_index.and | 30 |
| abstract_inverted_index.are | 12 |
| abstract_inverted_index.low | 27 |
| abstract_inverted_index.may | 25 |
| abstract_inverted_index.deep | 8 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.These | 11 |
| abstract_inverted_index.image | 17 |
| abstract_inverted_index.noise | 29 |
| abstract_inverted_index.often | 13 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.neural | 9 |
| abstract_inverted_index.relies | 5 |
| abstract_inverted_index.cropped | 16 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.seismic | 22 |
| abstract_inverted_index.signals | 23 |
| abstract_inverted_index.trained | 14 |
| abstract_inverted_index.advances | 1 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.patches. | 18 |
| abstract_inverted_index.frequency | 28 |
| abstract_inverted_index.introduce | 26 |
| abstract_inverted_index.networks. | 10 |
| abstract_inverted_index.Pertaining | 19 |
| abstract_inverted_index.convolutional | 7 |
| abstract_inverted_index.non-stationary | 21 |
| abstract_inverted_index.non-generalizability. | 31 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.56487721 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |