Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain Normalization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/rs16060969
Infrared–visible image fusion is valuable across various applications due to the complementary information that it provides. However, the current fusion methods face challenges in achieving high-quality fused images. This paper identifies a limitation in the existing fusion framework that affects the fusion quality: modal differences between infrared and visible images are often overlooked, resulting in the poor fusion of the two modalities. This limitation implies that features from different sources may not be consistently fused, which can impact the quality of the fusion results. Therefore, we propose a framework that utilizes feature-based decomposition and domain normalization. This decomposition method separates infrared and visible images into common and unique regions. To reduce modal differences while retaining unique information from the source images, we apply domain normalization to the common regions within the unified feature space. This space can transform infrared features into a pseudo-visible domain, ensuring that all features are fused within the same domain and minimizing the impact of modal differences during the fusion process. Noise in the source images adversely affects the fused images, compromising the overall fusion performance. Thus, we propose the non-local Gaussian filter. This filter can learn the shape and parameters of its filtering kernel based on the image features, effectively removing noise while preserving details. Additionally, we propose a novel dense attention in the feature extraction module, enabling the network to understand and leverage inter-layer information. Our experiments demonstrate a marked improvement in fusion quality with our proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs16060969
- https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784
- OA Status
- gold
- Cited By
- 8
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392662287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392662287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs16060969Digital Object Identifier
- Title
-
Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain NormalizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-10Full publication date if available
- Authors
-
Weiyi Chen, Lingjuan Miao, Yuhao Wang, Zhiqiang Zhou, Yajun QiaoList of authors in order
- Landing page
-
https://doi.org/10.3390/rs16060969Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784Direct OA link when available
- Concepts
-
Normalization (sociology), Image fusion, Infrared, Artificial intelligence, Pattern recognition (psychology), Computer science, Fusion, Computer vision, Feature (linguistics), Remote sensing, Image (mathematics), Geology, Optics, Physics, Philosophy, Anthropology, Linguistics, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392662287 |
|---|---|
| doi | https://doi.org/10.3390/rs16060969 |
| ids.doi | https://doi.org/10.3390/rs16060969 |
| ids.openalex | https://openalex.org/W4392662287 |
| fwci | 4.91948001 |
| type | article |
| title | Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain Normalization |
| biblio.issue | 6 |
| biblio.volume | 16 |
| biblio.last_page | 969 |
| biblio.first_page | 969 |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T11019 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9923999905586243 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Enhancement Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C136886441 |
| concepts[0].level | 2 |
| concepts[0].score | 0.748760461807251 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[0].display_name | Normalization (sociology) |
| concepts[1].id | https://openalex.org/C69744172 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5990167856216431 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860822 |
| concepts[1].display_name | Image fusion |
| concepts[2].id | https://openalex.org/C158355884 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5918639898300171 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11388 |
| concepts[2].display_name | Infrared |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5688371062278748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49043986201286316 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4698345363140106 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C158525013 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4643552303314209 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[6].display_name | Fusion |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4626167118549347 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4531179368495941 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3617553114891052 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.31477972865104675 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1583886742591858 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C120665830 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11110609769821167 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[12].display_name | Optics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10233226418495178 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C19165224 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[15].display_name | Anthropology |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/normalization |
| keywords[0].score | 0.748760461807251 |
| keywords[0].display_name | Normalization (sociology) |
| keywords[1].id | https://openalex.org/keywords/image-fusion |
| keywords[1].score | 0.5990167856216431 |
| keywords[1].display_name | Image fusion |
| keywords[2].id | https://openalex.org/keywords/infrared |
| keywords[2].score | 0.5918639898300171 |
| keywords[2].display_name | Infrared |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5688371062278748 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.49043986201286316 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4698345363140106 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/fusion |
| keywords[6].score | 0.4643552303314209 |
| keywords[6].display_name | Fusion |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4626167118549347 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.4531179368495941 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.3617553114891052 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.31477972865104675 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.1583886742591858 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/optics |
| keywords[12].score | 0.11110609769821167 |
| keywords[12].display_name | Optics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.10233226418495178 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/rs16060969 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs16060969 |
| locations[1].id | pmh:oai:doaj.org/article:7f0f155224f545eeb5e2e2e2972a04c3 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 16, Iss 6, p 969 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/7f0f155224f545eeb5e2e2e2972a04c3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100731420 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1702-5653 |
| authorships[0].author.display_name | Weiyi Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiyi Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[1].author.id | https://openalex.org/A5100348913 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1782-4535 |
| authorships[1].author.display_name | Lingjuan Miao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[1].institutions[0].id | https://openalex.org/I125839683 |
| authorships[1].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lingjuan Miao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[2].author.id | https://openalex.org/A5027453572 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-0255-2413 |
| authorships[2].author.display_name | Yuhao Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[2].institutions[0].id | https://openalex.org/I125839683 |
| authorships[2].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuhao Wang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[3].author.id | https://openalex.org/A5029710781 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6871-8236 |
| authorships[3].author.display_name | Zhiqiang Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[3].institutions[0].id | https://openalex.org/I125839683 |
| authorships[3].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhiqiang Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[4].author.id | https://openalex.org/A5101878092 |
| authorships[4].author.orcid | https://orcid.org/0009-0007-8120-9146 |
| authorships[4].author.display_name | Yajun Qiao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| authorships[4].institutions[0].id | https://openalex.org/I125839683 |
| authorships[4].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Institute of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yajun Qiao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation, Beijing Institute of Technology, Beijing 100081, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-12T00:00:00 |
| display_name | Infrared–Visible Image Fusion through Feature-Based Decomposition and Domain Normalization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| related_works | https://openalex.org/W2788731446, https://openalex.org/W2204403038, https://openalex.org/W3152170969, https://openalex.org/W2379054866, https://openalex.org/W2549658594, https://openalex.org/W2095903272, https://openalex.org/W2370195708, https://openalex.org/W1490651872, https://openalex.org/W2350422455, https://openalex.org/W2139242969 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs16060969 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs16060969 |
| primary_location.id | doi:10.3390/rs16060969 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/16/6/969/pdf?version=1710126784 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs16060969 |
| publication_date | 2024-03-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2809795042, https://openalex.org/W6780833797, https://openalex.org/W2892682079, https://openalex.org/W2901100349, https://openalex.org/W2179019672, https://openalex.org/W2522212509, https://openalex.org/W3007891240, https://openalex.org/W2209762097, https://openalex.org/W2035848186, https://openalex.org/W2153868441, https://openalex.org/W1963915657, https://openalex.org/W2024423568, https://openalex.org/W2772136803, https://openalex.org/W6839702280, https://openalex.org/W3046194589, https://openalex.org/W6783326533, https://openalex.org/W4283732315, https://openalex.org/W4220893768, https://openalex.org/W6768917978, https://openalex.org/W2997144603, https://openalex.org/W3047236210, https://openalex.org/W2798987894, https://openalex.org/W2999838674, https://openalex.org/W3161010852, https://openalex.org/W3023395698, https://openalex.org/W2912147220, https://openalex.org/W3011768656, https://openalex.org/W4210895834, https://openalex.org/W2998012573, https://openalex.org/W2094162745, https://openalex.org/W4282559325, https://openalex.org/W3030921250, https://openalex.org/W3093479381, https://openalex.org/W2963073614, https://openalex.org/W2963800363, https://openalex.org/W2598581049, https://openalex.org/W6734074887, https://openalex.org/W2962793481, https://openalex.org/W6745992979, https://openalex.org/W2584009249, https://openalex.org/W2603777577, https://openalex.org/W2998341422, https://openalex.org/W2133665775, https://openalex.org/W4312594135, https://openalex.org/W2757470902, https://openalex.org/W4312668764, https://openalex.org/W4313256502, https://openalex.org/W3126855404, https://openalex.org/W4285600783, https://openalex.org/W3133700567, https://openalex.org/W2009758395, https://openalex.org/W2113494422, https://openalex.org/W1997596006, https://openalex.org/W1580436348, https://openalex.org/W3043904761, https://openalex.org/W3105639468, https://openalex.org/W2980285373, https://openalex.org/W3083923056, https://openalex.org/W4285164151 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 31, 87, 141, 213, 234 |
| abstract_inverted_index.To | 109 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.in | 23, 33, 54, 166, 217, 237 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 14 |
| abstract_inverted_index.of | 58, 80, 158, 195 |
| abstract_inverted_index.on | 200 |
| abstract_inverted_index.to | 9, 125, 225 |
| abstract_inverted_index.we | 85, 121, 181, 211 |
| abstract_inverted_index.Our | 231 |
| abstract_inverted_index.all | 146 |
| abstract_inverted_index.and | 47, 93, 101, 106, 154, 193, 227 |
| abstract_inverted_index.are | 50, 148 |
| abstract_inverted_index.can | 76, 136, 189 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.its | 196 |
| abstract_inverted_index.may | 70 |
| abstract_inverted_index.not | 71 |
| abstract_inverted_index.our | 241 |
| abstract_inverted_index.the | 10, 17, 34, 40, 55, 59, 78, 81, 118, 126, 130, 151, 156, 162, 167, 172, 176, 183, 191, 201, 218, 223 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.This | 28, 62, 96, 134, 187 |
| abstract_inverted_index.face | 21 |
| abstract_inverted_index.from | 67, 117 |
| abstract_inverted_index.into | 104, 140 |
| abstract_inverted_index.poor | 56 |
| abstract_inverted_index.same | 152 |
| abstract_inverted_index.that | 13, 38, 65, 89, 145 |
| abstract_inverted_index.with | 240 |
| abstract_inverted_index.Noise | 165 |
| abstract_inverted_index.Thus, | 180 |
| abstract_inverted_index.apply | 122 |
| abstract_inverted_index.based | 199 |
| abstract_inverted_index.dense | 215 |
| abstract_inverted_index.fused | 26, 149, 173 |
| abstract_inverted_index.image | 1, 202 |
| abstract_inverted_index.learn | 190 |
| abstract_inverted_index.modal | 43, 111, 159 |
| abstract_inverted_index.noise | 206 |
| abstract_inverted_index.novel | 214 |
| abstract_inverted_index.often | 51 |
| abstract_inverted_index.paper | 29 |
| abstract_inverted_index.shape | 192 |
| abstract_inverted_index.space | 135 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.while | 113, 207 |
| abstract_inverted_index.across | 5 |
| abstract_inverted_index.common | 105, 127 |
| abstract_inverted_index.domain | 94, 123, 153 |
| abstract_inverted_index.during | 161 |
| abstract_inverted_index.filter | 188 |
| abstract_inverted_index.fused, | 74 |
| abstract_inverted_index.fusion | 2, 19, 36, 41, 57, 82, 163, 178, 238 |
| abstract_inverted_index.images | 49, 103, 169 |
| abstract_inverted_index.impact | 77, 157 |
| abstract_inverted_index.kernel | 198 |
| abstract_inverted_index.marked | 235 |
| abstract_inverted_index.method | 98 |
| abstract_inverted_index.reduce | 110 |
| abstract_inverted_index.source | 119, 168 |
| abstract_inverted_index.space. | 133 |
| abstract_inverted_index.unique | 107, 115 |
| abstract_inverted_index.within | 129, 150 |
| abstract_inverted_index.affects | 39, 171 |
| abstract_inverted_index.between | 45 |
| abstract_inverted_index.current | 18 |
| abstract_inverted_index.domain, | 143 |
| abstract_inverted_index.feature | 132, 219 |
| abstract_inverted_index.filter. | 186 |
| abstract_inverted_index.images, | 120, 174 |
| abstract_inverted_index.images. | 27 |
| abstract_inverted_index.implies | 64 |
| abstract_inverted_index.method. | 243 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.module, | 221 |
| abstract_inverted_index.network | 224 |
| abstract_inverted_index.overall | 177 |
| abstract_inverted_index.propose | 86, 182, 212 |
| abstract_inverted_index.quality | 79, 239 |
| abstract_inverted_index.regions | 128 |
| abstract_inverted_index.sources | 69 |
| abstract_inverted_index.unified | 131 |
| abstract_inverted_index.various | 6 |
| abstract_inverted_index.visible | 48, 102 |
| abstract_inverted_index.Gaussian | 185 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.details. | 209 |
| abstract_inverted_index.enabling | 222 |
| abstract_inverted_index.ensuring | 144 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.features | 66, 139, 147 |
| abstract_inverted_index.infrared | 46, 100, 138 |
| abstract_inverted_index.leverage | 228 |
| abstract_inverted_index.process. | 164 |
| abstract_inverted_index.proposed | 242 |
| abstract_inverted_index.quality: | 42 |
| abstract_inverted_index.regions. | 108 |
| abstract_inverted_index.removing | 205 |
| abstract_inverted_index.results. | 83 |
| abstract_inverted_index.utilizes | 90 |
| abstract_inverted_index.valuable | 4 |
| abstract_inverted_index.achieving | 24 |
| abstract_inverted_index.adversely | 170 |
| abstract_inverted_index.attention | 216 |
| abstract_inverted_index.different | 68 |
| abstract_inverted_index.features, | 203 |
| abstract_inverted_index.filtering | 197 |
| abstract_inverted_index.framework | 37, 88 |
| abstract_inverted_index.non-local | 184 |
| abstract_inverted_index.provides. | 15 |
| abstract_inverted_index.resulting | 53 |
| abstract_inverted_index.retaining | 114 |
| abstract_inverted_index.separates | 99 |
| abstract_inverted_index.transform | 137 |
| abstract_inverted_index.Therefore, | 84 |
| abstract_inverted_index.challenges | 22 |
| abstract_inverted_index.extraction | 220 |
| abstract_inverted_index.identifies | 30 |
| abstract_inverted_index.limitation | 32, 63 |
| abstract_inverted_index.minimizing | 155 |
| abstract_inverted_index.parameters | 194 |
| abstract_inverted_index.preserving | 208 |
| abstract_inverted_index.understand | 226 |
| abstract_inverted_index.demonstrate | 233 |
| abstract_inverted_index.differences | 44, 112, 160 |
| abstract_inverted_index.effectively | 204 |
| abstract_inverted_index.experiments | 232 |
| abstract_inverted_index.improvement | 236 |
| abstract_inverted_index.information | 12, 116 |
| abstract_inverted_index.inter-layer | 229 |
| abstract_inverted_index.modalities. | 61 |
| abstract_inverted_index.overlooked, | 52 |
| abstract_inverted_index.applications | 7 |
| abstract_inverted_index.compromising | 175 |
| abstract_inverted_index.consistently | 73 |
| abstract_inverted_index.high-quality | 25 |
| abstract_inverted_index.information. | 230 |
| abstract_inverted_index.performance. | 179 |
| abstract_inverted_index.Additionally, | 210 |
| abstract_inverted_index.complementary | 11 |
| abstract_inverted_index.decomposition | 92, 97 |
| abstract_inverted_index.feature-based | 91 |
| abstract_inverted_index.normalization | 124 |
| abstract_inverted_index.normalization. | 95 |
| abstract_inverted_index.pseudo-visible | 142 |
| abstract_inverted_index.Infrared–visible | 0 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5027453572 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I125839683 |
| citation_normalized_percentile.value | 0.92888959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |