Initial Machine Learning Framework Development of Agriculture Cyber Physical Systems Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/1196/1/012065
A cyber-physical system (CPS) shows its potential in integrating the computer systems with the physical environment. The progress in such systems has brought large potential to improve human life quality, such as improved health care services, energy consumption and food supply chain system (FSC). In particular, FSC plays an important role in human beings. It comes from the complex agricultural system and lead up to human dining table. The fusion of CPS and agricultural system could improve the quality of food and environment. Therefore, many studies have been conducted to tackle the challenges in this domain, such as lack of information systems and infrastructures, poor collaboration toward larger Internet of Things solutions and dynamic changes of intrinsic and extrinsic conditions of enabler technology in precision agriculture. In this work, we focus on developing an initial framework that could improve prediction rate and handling imprecise data due to the dynamic problem in precision agriculture. As an evaluation, first we predict a rainfall event using weather sensors data and after that the prediction result will be continue to set up as an additional attribute for predicting the action of water sprinkle monitoring system. The results confirm the good accuracy for farmers and could be applicable in real-time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/1196/1/012065
- OA Status
- diamond
- Cited By
- 9
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2936005232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2936005232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/1196/1/012065Digital Object Identifier
- Title
-
Initial Machine Learning Framework Development of Agriculture Cyber Physical SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-01Full publication date if available
- Authors
-
Gregorius Airlangga, Alan LiuList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/1196/1/012065Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/1196/1/012065Direct OA link when available
- Concepts
-
Enabling, Precision agriculture, Cyber-physical system, Computer science, Agriculture, Domain (mathematical analysis), Table (database), Risk analysis (engineering), Data science, Business, Data mining, Biology, Mathematical analysis, Psychology, Psychotherapist, Ecology, Operating system, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 3, 2022: 1, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2936005232 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| ids.doi | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| ids.mag | 2936005232 |
| ids.openalex | https://openalex.org/W2936005232 |
| fwci | 0.93208571 |
| type | article |
| title | Initial Machine Learning Framework Development of Agriculture Cyber Physical Systems |
| biblio.issue | |
| biblio.volume | 1196 |
| biblio.last_page | 012065 |
| biblio.first_page | 012065 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.989799976348877 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10763 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9847000241279602 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Digital Transformation in Industry |
| topics[2].id | https://openalex.org/T12486 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9715999960899353 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1106 |
| topics[2].subfield.display_name | Food Science |
| topics[2].display_name | Food Supply Chain Traceability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22607594 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7426556348800659 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5375150 |
| concepts[0].display_name | Enabling |
| concepts[1].id | https://openalex.org/C120217122 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6786313056945801 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q740083 |
| concepts[1].display_name | Precision agriculture |
| concepts[2].id | https://openalex.org/C179768478 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6755869388580322 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1120057 |
| concepts[2].display_name | Cyber-physical system |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6465205550193787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C118518473 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5593441128730774 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[4].display_name | Agriculture |
| concepts[5].id | https://openalex.org/C36503486 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4441041946411133 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[5].display_name | Domain (mathematical analysis) |
| concepts[6].id | https://openalex.org/C45235069 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42534345388412476 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q278425 |
| concepts[6].display_name | Table (database) |
| concepts[7].id | https://openalex.org/C112930515 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4186370372772217 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4389547 |
| concepts[7].display_name | Risk analysis (engineering) |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3452910780906677 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C144133560 |
| concepts[9].level | 0 |
| concepts[9].score | 0.18093213438987732 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[9].display_name | Business |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16131451725959778 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C542102704 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[14].display_name | Psychotherapist |
| concepts[15].id | https://openalex.org/C18903297 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[15].display_name | Ecology |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/enabling |
| keywords[0].score | 0.7426556348800659 |
| keywords[0].display_name | Enabling |
| keywords[1].id | https://openalex.org/keywords/precision-agriculture |
| keywords[1].score | 0.6786313056945801 |
| keywords[1].display_name | Precision agriculture |
| keywords[2].id | https://openalex.org/keywords/cyber-physical-system |
| keywords[2].score | 0.6755869388580322 |
| keywords[2].display_name | Cyber-physical system |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6465205550193787 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/agriculture |
| keywords[4].score | 0.5593441128730774 |
| keywords[4].display_name | Agriculture |
| keywords[5].id | https://openalex.org/keywords/domain |
| keywords[5].score | 0.4441041946411133 |
| keywords[5].display_name | Domain (mathematical analysis) |
| keywords[6].id | https://openalex.org/keywords/table |
| keywords[6].score | 0.42534345388412476 |
| keywords[6].display_name | Table (database) |
| keywords[7].id | https://openalex.org/keywords/risk-analysis |
| keywords[7].score | 0.4186370372772217 |
| keywords[7].display_name | Risk analysis (engineering) |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.3452910780906677 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/business |
| keywords[9].score | 0.18093213438987732 |
| keywords[9].display_name | Business |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.16131451725959778 |
| keywords[10].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/1196/1/012065 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032437973 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8162-6942 |
| authorships[0].author.display_name | Gregorius Airlangga |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161010349 |
| authorships[0].affiliations[0].raw_affiliation_string | Information System Department, Atma Jaya Catholic University of Indonesia, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I161010349 |
| authorships[0].institutions[0].ror | https://ror.org/02hd2zk59 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161010349 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Atma Jaya Catholic University of Indonesia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gregorius Airlangga |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Information System Department, Atma Jaya Catholic University of Indonesia, Indonesia |
| authorships[1].author.id | https://openalex.org/A5101726185 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8884-6662 |
| authorships[1].author.display_name | Alan Liu |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148099254 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrical Engineering Department, National Chung Cheng University, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I148099254 |
| authorships[1].institutions[0].ror | https://ror.org/0028v3876 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148099254 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Chung Cheng University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Alan Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Electrical Engineering Department, National Chung Cheng University, Taiwan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Initial Machine Learning Framework Development of Agriculture Cyber Physical Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.989799976348877 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W1974860256, https://openalex.org/W4321381871, https://openalex.org/W4383065492, https://openalex.org/W2111901522, https://openalex.org/W2289630402, https://openalex.org/W2408679928, https://openalex.org/W1528456027, https://openalex.org/W4385224773, https://openalex.org/W1994033552, https://openalex.org/W3004173571 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/1196/1/012065 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| primary_location.id | doi:10.1088/1742-6596/1196/1/012065 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/1196/1/012065 |
| publication_date | 2019-03-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2888648656, https://openalex.org/W2890793284, https://openalex.org/W2471387764, https://openalex.org/W2892203049, https://openalex.org/W2884690740, https://openalex.org/W2771058985, https://openalex.org/W2888038539, https://openalex.org/W2784286657, https://openalex.org/W4247227407 |
| referenced_works_count | 9 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 159 |
| abstract_inverted_index.As | 153 |
| abstract_inverted_index.In | 44, 126 |
| abstract_inverted_index.It | 54 |
| abstract_inverted_index.an | 48, 133, 154, 179 |
| abstract_inverted_index.as | 31, 97, 178 |
| abstract_inverted_index.be | 173, 201 |
| abstract_inverted_index.in | 7, 18, 51, 93, 123, 150, 203 |
| abstract_inverted_index.of | 70, 79, 99, 109, 115, 120, 186 |
| abstract_inverted_index.on | 131 |
| abstract_inverted_index.to | 25, 64, 89, 146, 175 |
| abstract_inverted_index.up | 63, 177 |
| abstract_inverted_index.we | 129, 157 |
| abstract_inverted_index.CPS | 71 |
| abstract_inverted_index.FSC | 46 |
| abstract_inverted_index.The | 16, 68, 191 |
| abstract_inverted_index.and | 38, 61, 72, 81, 102, 112, 117, 141, 166, 199 |
| abstract_inverted_index.due | 145 |
| abstract_inverted_index.for | 182, 197 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.its | 5 |
| abstract_inverted_index.set | 176 |
| abstract_inverted_index.the | 9, 13, 57, 77, 91, 147, 169, 184, 194 |
| abstract_inverted_index.been | 87 |
| abstract_inverted_index.care | 34 |
| abstract_inverted_index.data | 144, 165 |
| abstract_inverted_index.food | 39, 80 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.good | 195 |
| abstract_inverted_index.have | 86 |
| abstract_inverted_index.lack | 98 |
| abstract_inverted_index.lead | 62 |
| abstract_inverted_index.life | 28 |
| abstract_inverted_index.many | 84 |
| abstract_inverted_index.poor | 104 |
| abstract_inverted_index.rate | 140 |
| abstract_inverted_index.role | 50 |
| abstract_inverted_index.such | 19, 30, 96 |
| abstract_inverted_index.that | 136, 168 |
| abstract_inverted_index.this | 94, 127 |
| abstract_inverted_index.will | 172 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.(CPS) | 3 |
| abstract_inverted_index.after | 167 |
| abstract_inverted_index.chain | 41 |
| abstract_inverted_index.comes | 55 |
| abstract_inverted_index.could | 75, 137, 200 |
| abstract_inverted_index.event | 161 |
| abstract_inverted_index.first | 156 |
| abstract_inverted_index.focus | 130 |
| abstract_inverted_index.human | 27, 52, 65 |
| abstract_inverted_index.large | 23 |
| abstract_inverted_index.plays | 47 |
| abstract_inverted_index.shows | 4 |
| abstract_inverted_index.using | 162 |
| abstract_inverted_index.water | 187 |
| abstract_inverted_index.work, | 128 |
| abstract_inverted_index.(FSC). | 43 |
| abstract_inverted_index.Things | 110 |
| abstract_inverted_index.action | 185 |
| abstract_inverted_index.dining | 66 |
| abstract_inverted_index.energy | 36 |
| abstract_inverted_index.fusion | 69 |
| abstract_inverted_index.health | 33 |
| abstract_inverted_index.larger | 107 |
| abstract_inverted_index.result | 171 |
| abstract_inverted_index.supply | 40 |
| abstract_inverted_index.system | 2, 42, 60, 74 |
| abstract_inverted_index.table. | 67 |
| abstract_inverted_index.tackle | 90 |
| abstract_inverted_index.toward | 106 |
| abstract_inverted_index.beings. | 53 |
| abstract_inverted_index.brought | 22 |
| abstract_inverted_index.changes | 114 |
| abstract_inverted_index.complex | 58 |
| abstract_inverted_index.confirm | 193 |
| abstract_inverted_index.domain, | 95 |
| abstract_inverted_index.dynamic | 113, 148 |
| abstract_inverted_index.enabler | 121 |
| abstract_inverted_index.farmers | 198 |
| abstract_inverted_index.improve | 26, 76, 138 |
| abstract_inverted_index.initial | 134 |
| abstract_inverted_index.predict | 158 |
| abstract_inverted_index.problem | 149 |
| abstract_inverted_index.quality | 78 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.sensors | 164 |
| abstract_inverted_index.studies | 85 |
| abstract_inverted_index.system. | 190 |
| abstract_inverted_index.systems | 11, 20, 101 |
| abstract_inverted_index.weather | 163 |
| abstract_inverted_index.Internet | 108 |
| abstract_inverted_index.accuracy | 196 |
| abstract_inverted_index.computer | 10 |
| abstract_inverted_index.continue | 174 |
| abstract_inverted_index.handling | 142 |
| abstract_inverted_index.improved | 32 |
| abstract_inverted_index.physical | 14 |
| abstract_inverted_index.progress | 17 |
| abstract_inverted_index.quality, | 29 |
| abstract_inverted_index.rainfall | 160 |
| abstract_inverted_index.sprinkle | 188 |
| abstract_inverted_index.attribute | 181 |
| abstract_inverted_index.conducted | 88 |
| abstract_inverted_index.extrinsic | 118 |
| abstract_inverted_index.framework | 135 |
| abstract_inverted_index.important | 49 |
| abstract_inverted_index.imprecise | 143 |
| abstract_inverted_index.intrinsic | 116 |
| abstract_inverted_index.potential | 6, 24 |
| abstract_inverted_index.precision | 124, 151 |
| abstract_inverted_index.services, | 35 |
| abstract_inverted_index.solutions | 111 |
| abstract_inverted_index.Therefore, | 83 |
| abstract_inverted_index.additional | 180 |
| abstract_inverted_index.applicable | 202 |
| abstract_inverted_index.challenges | 92 |
| abstract_inverted_index.conditions | 119 |
| abstract_inverted_index.developing | 132 |
| abstract_inverted_index.monitoring | 189 |
| abstract_inverted_index.predicting | 183 |
| abstract_inverted_index.prediction | 139, 170 |
| abstract_inverted_index.real-time. | 204 |
| abstract_inverted_index.technology | 122 |
| abstract_inverted_index.consumption | 37 |
| abstract_inverted_index.evaluation, | 155 |
| abstract_inverted_index.information | 100 |
| abstract_inverted_index.integrating | 8 |
| abstract_inverted_index.particular, | 45 |
| abstract_inverted_index.agricultural | 59, 73 |
| abstract_inverted_index.agriculture. | 125, 152 |
| abstract_inverted_index.environment. | 15, 82 |
| abstract_inverted_index.collaboration | 105 |
| abstract_inverted_index.cyber-physical | 1 |
| abstract_inverted_index.infrastructures, | 103 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101726185, https://openalex.org/A5032437973 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I148099254, https://openalex.org/I161010349 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.85691288 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |