Inner-Cycle Phases Can Be Estimated from a Single Inertial Sensor by Long Short-Term Memory Neural Network in Roller-Ski Skating Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22239267
Objective: The aim of this study was to provide a new machine learning method to determine temporal events and inner-cycle parameters (e.g., cycle, pole and ski contact and swing time) in cross-country roller-ski skating on the field, using a single inertial measurement unit (IMU). Methods: The developed method is based on long short-term memory neural networks to detect the initial and final contact of the poles and skis with the ground during the cyclic movements. Eleven athletes skied four laps of 2.5 km at a low and high intensity using skis with two different rolling coefficients. They were equipped with IMUs attached to the upper back, lower back and to the sternum. Data from force insoles and force poles were used as the reference system. Results: The IMU placed on the upper back provided the best results, as the LSTM network was able to determine the temporal events with a mean error ranging from −1 to 11 ms and had a standard deviation (SD) of the error between 64 and 70 ms. The corresponding inner-cycle parameters were calculated with a mean error ranging from −11 to 12 ms and an SD between 66 and 74 ms. The method detected 95% of the events for the poles and 87% of the events for the skis. Conclusion: The proposed LSTM method provides a promising tool for assessing temporal events and inner-cycle phases in roller-ski skating, showing the potential of using a single IMU to estimate different spatiotemporal parameters of human locomotion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22239267
- https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283
- OA Status
- gold
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310191260
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310191260Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22239267Digital Object Identifier
- Title
-
Inner-Cycle Phases Can Be Estimated from a Single Inertial Sensor by Long Short-Term Memory Neural Network in Roller-Ski SkatingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-28Full publication date if available
- Authors
-
Frédéric Meyer, Magne Lund-Hansen, Trine M. Seeberg, Jan Kocbach, Øyvind Sandbakk, Andreas AustengList of authors in order
- Landing page
-
https://doi.org/10.3390/s22239267Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283Direct OA link when available
- Concepts
-
Inertial measurement unit, Ground reaction force, Ranging, Standard deviation, Simulation, Artificial neural network, Engineering, Computer science, Geodesy, Artificial intelligence, Mathematics, Statistics, Physics, Geology, Telecommunications, Classical mechanics, KinematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310191260 |
|---|---|
| doi | https://doi.org/10.3390/s22239267 |
| ids.doi | https://doi.org/10.3390/s22239267 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36501969 |
| ids.openalex | https://openalex.org/W4310191260 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D012865 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Skiing |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008570 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Memory, Short-Term |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012861 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Skating |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D056352 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Athletes |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012865 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Skiing |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008570 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Memory, Short-Term |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012861 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Skating |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D056352 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Athletes |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016571 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Neural Networks, Computer |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012865 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Skiing |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D012861 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Skating |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D056352 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Athletes |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D012865 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Skiing |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008570 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Memory, Short-Term |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D012861 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Skating |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D056352 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Athletes |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D016571 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Inner-Cycle Phases Can Be Estimated from a Single Inertial Sensor by Long Short-Term Memory Neural Network in Roller-Ski Skating |
| biblio.issue | 23 |
| biblio.volume | 22 |
| biblio.last_page | 9267 |
| biblio.first_page | 9267 |
| topics[0].id | https://openalex.org/T13176 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Winter Sports Injuries and Performance |
| topics[1].id | https://openalex.org/T10157 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2732 |
| topics[1].subfield.display_name | Orthopedics and Sports Medicine |
| topics[1].display_name | Sports Performance and Training |
| topics[2].id | https://openalex.org/T11246 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.980400025844574 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2732 |
| topics[2].subfield.display_name | Orthopedics and Sports Medicine |
| topics[2].display_name | Sports injuries and prevention |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C79061980 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8237366676330566 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[0].display_name | Inertial measurement unit |
| concepts[1].id | https://openalex.org/C96332660 |
| concepts[1].level | 3 |
| concepts[1].score | 0.49295878410339355 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5610971 |
| concepts[1].display_name | Ground reaction force |
| concepts[2].id | https://openalex.org/C115051666 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48670604825019836 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[2].display_name | Ranging |
| concepts[3].id | https://openalex.org/C22679943 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4851720929145813 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q159375 |
| concepts[3].display_name | Standard deviation |
| concepts[4].id | https://openalex.org/C44154836 |
| concepts[4].level | 1 |
| concepts[4].score | 0.469890832901001 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[4].display_name | Simulation |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4674564003944397 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3749181032180786 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.35695916414260864 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C13280743 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34446972608566284 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[8].display_name | Geodesy |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2846897840499878 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2469286322593689 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.14237019419670105 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13332268595695496 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12336817383766174 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C76155785 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11371994018554688 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[14].display_name | Telecommunications |
| concepts[15].id | https://openalex.org/C74650414 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[15].display_name | Classical mechanics |
| concepts[16].id | https://openalex.org/C39920418 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11476 |
| concepts[16].display_name | Kinematics |
| keywords[0].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[0].score | 0.8237366676330566 |
| keywords[0].display_name | Inertial measurement unit |
| keywords[1].id | https://openalex.org/keywords/ground-reaction-force |
| keywords[1].score | 0.49295878410339355 |
| keywords[1].display_name | Ground reaction force |
| keywords[2].id | https://openalex.org/keywords/ranging |
| keywords[2].score | 0.48670604825019836 |
| keywords[2].display_name | Ranging |
| keywords[3].id | https://openalex.org/keywords/standard-deviation |
| keywords[3].score | 0.4851720929145813 |
| keywords[3].display_name | Standard deviation |
| keywords[4].id | https://openalex.org/keywords/simulation |
| keywords[4].score | 0.469890832901001 |
| keywords[4].display_name | Simulation |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4674564003944397 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.3749181032180786 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.35695916414260864 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/geodesy |
| keywords[8].score | 0.34446972608566284 |
| keywords[8].display_name | Geodesy |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2846897840499878 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2469286322593689 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.14237019419670105 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.13332268595695496 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.12336817383766174 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/telecommunications |
| keywords[14].score | 0.11371994018554688 |
| keywords[14].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/s22239267 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22239267 |
| locations[1].id | pmid:36501969 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36501969 |
| locations[2].id | pmh:oai:www.duo.uio.no:10852/100178 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401717 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Duo Research Archive (University of Oslo) |
| locations[2].source.host_organization | https://openalex.org/I184942183 |
| locations[2].source.host_organization_name | University of Oslo |
| locations[2].source.host_organization_lineage | https://openalex.org/I184942183 |
| locations[2].license | other-oa |
| locations[2].pdf_url | http://hdl.handle.net/10852/100178 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | 1424-8220 |
| locations[2].landing_page_url | http://hdl.handle.net/10852/100178 |
| locations[3].id | pmh:oai:doaj.org/article:cee5f193f702422fac7995119007e14e |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 22, Iss 23, p 9267 (2022) |
| locations[3].landing_page_url | https://doaj.org/article/cee5f193f702422fac7995119007e14e |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/22/23/9267/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 22; Issue 23; Pages: 9267 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s22239267 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:9739028 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9739028 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5014685834 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1434-6542 |
| authorships[0].author.display_name | Frédéric Meyer |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184942183 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Informatics, University of Oslo, 0373 Oslo, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I184942183 |
| authorships[0].institutions[0].ror | https://ror.org/01xtthb56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184942183 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Oslo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frédéric Meyer |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Informatics, University of Oslo, 0373 Oslo, Norway |
| authorships[1].author.id | https://openalex.org/A5041752606 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5418-6523 |
| authorships[1].author.display_name | Magne Lund-Hansen |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76283144 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Physical Performance, Norwegian School of Sport Science, 0806 Oslo, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I76283144 |
| authorships[1].institutions[0].ror | https://ror.org/045016w83 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76283144 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | Norwegian School of Sport Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Magne Lund-Hansen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physical Performance, Norwegian School of Sport Science, 0806 Oslo, Norway |
| authorships[2].author.id | https://openalex.org/A5042213656 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6801-3842 |
| authorships[2].author.display_name | Trine M. Seeberg |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[2].affiliations[1].raw_affiliation_string | SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I4387930215 |
| authorships[2].institutions[0].ror | https://ror.org/028m52w57 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | SINTEF Digital |
| authorships[2].institutions[1].id | https://openalex.org/I204778367 |
| authorships[2].institutions[1].ror | https://ror.org/05xg72x27 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I204778367 |
| authorships[2].institutions[1].country_code | NO |
| authorships[2].institutions[1].display_name | Norwegian University of Science and Technology |
| authorships[2].institutions[2].id | https://openalex.org/I173888879 |
| authorships[2].institutions[2].ror | https://ror.org/01f677e56 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I173888879 |
| authorships[2].institutions[2].country_code | NO |
| authorships[2].institutions[2].display_name | SINTEF |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Trine M. Seeberg |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway, SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway |
| authorships[3].author.id | https://openalex.org/A5059053118 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6360-6814 |
| authorships[3].author.display_name | Jan Kocbach |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I204778367 |
| authorships[3].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jan Kocbach |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[4].author.id | https://openalex.org/A5065839112 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9014-5152 |
| authorships[4].author.display_name | Øyvind Sandbakk |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[4].institutions[0].id | https://openalex.org/I204778367 |
| authorships[4].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[4].institutions[0].country_code | NO |
| authorships[4].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Øyvind Sandbakk |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[5].author.id | https://openalex.org/A5021187707 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9465-8337 |
| authorships[5].author.display_name | Andreas Austeng |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I184942183 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Informatics, University of Oslo, 0373 Oslo, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I184942183 |
| authorships[5].institutions[0].ror | https://ror.org/01xtthb56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I184942183 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | University of Oslo |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Andreas Austeng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Informatics, University of Oslo, 0373 Oslo, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Inner-Cycle Phases Can Be Estimated from a Single Inertial Sensor by Long Short-Term Memory Neural Network in Roller-Ski Skating |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13176 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Winter Sports Injuries and Performance |
| related_works | https://openalex.org/W4384112194, https://openalex.org/W2783354812, https://openalex.org/W2103009189, https://openalex.org/W4312958259, https://openalex.org/W4390813131, https://openalex.org/W2349383066, https://openalex.org/W4328132048, https://openalex.org/W4308259661, https://openalex.org/W3017293403, https://openalex.org/W2042975402 |
| cited_by_count | 0 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s22239267 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22239267 |
| primary_location.id | doi:10.3390/s22239267 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/23/9267/pdf?version=1669803283 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22239267 |
| publication_date | 2022-11-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2891489434, https://openalex.org/W1993384941, https://openalex.org/W2123974558, https://openalex.org/W1988702183, https://openalex.org/W2793667086, https://openalex.org/W2780731227, https://openalex.org/W3204821959, https://openalex.org/W3155879322, https://openalex.org/W2969586733, https://openalex.org/W3002403519, https://openalex.org/W3037654363, https://openalex.org/W3047769734, https://openalex.org/W3113762010, https://openalex.org/W2986257949, https://openalex.org/W2900759060, https://openalex.org/W3154334027, https://openalex.org/W4206697265, https://openalex.org/W1820488154, https://openalex.org/W4293275308, https://openalex.org/W4310031719, https://openalex.org/W2107594277, https://openalex.org/W3188594404, https://openalex.org/W2802305647, https://openalex.org/W3206694480, https://openalex.org/W4376121828 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 9, 38, 84, 149, 160, 179, 220, 238 |
| abstract_inverted_index.11 | 156 |
| abstract_inverted_index.12 | 186 |
| abstract_inverted_index.64 | 168 |
| abstract_inverted_index.66 | 192 |
| abstract_inverted_index.70 | 170 |
| abstract_inverted_index.74 | 194 |
| abstract_inverted_index.SD | 190 |
| abstract_inverted_index.an | 189 |
| abstract_inverted_index.as | 121, 137 |
| abstract_inverted_index.at | 83 |
| abstract_inverted_index.in | 30, 230 |
| abstract_inverted_index.is | 48 |
| abstract_inverted_index.km | 82 |
| abstract_inverted_index.ms | 157, 187 |
| abstract_inverted_index.of | 3, 63, 80, 164, 200, 208, 236, 246 |
| abstract_inverted_index.on | 34, 50, 129 |
| abstract_inverted_index.to | 7, 14, 56, 102, 109, 143, 155, 185, 241 |
| abstract_inverted_index.2.5 | 81 |
| abstract_inverted_index.87% | 207 |
| abstract_inverted_index.95% | 199 |
| abstract_inverted_index.IMU | 127, 240 |
| abstract_inverted_index.The | 1, 45, 126, 172, 196, 215 |
| abstract_inverted_index.aim | 2 |
| abstract_inverted_index.and | 18, 24, 27, 60, 66, 86, 108, 116, 158, 169, 188, 193, 206, 227 |
| abstract_inverted_index.for | 203, 211, 223 |
| abstract_inverted_index.had | 159 |
| abstract_inverted_index.low | 85 |
| abstract_inverted_index.ms. | 171, 195 |
| abstract_inverted_index.new | 10 |
| abstract_inverted_index.ski | 25 |
| abstract_inverted_index.the | 35, 58, 64, 69, 72, 103, 110, 122, 130, 134, 138, 145, 165, 201, 204, 209, 212, 234 |
| abstract_inverted_index.two | 92 |
| abstract_inverted_index.was | 6, 141 |
| abstract_inverted_index.(SD) | 163 |
| abstract_inverted_index.Data | 112 |
| abstract_inverted_index.IMUs | 100 |
| abstract_inverted_index.LSTM | 139, 217 |
| abstract_inverted_index.They | 96 |
| abstract_inverted_index.able | 142 |
| abstract_inverted_index.back | 107, 132 |
| abstract_inverted_index.best | 135 |
| abstract_inverted_index.four | 78 |
| abstract_inverted_index.from | 113, 153, 183 |
| abstract_inverted_index.high | 87 |
| abstract_inverted_index.laps | 79 |
| abstract_inverted_index.long | 51 |
| abstract_inverted_index.mean | 150, 180 |
| abstract_inverted_index.pole | 23 |
| abstract_inverted_index.skis | 67, 90 |
| abstract_inverted_index.this | 4 |
| abstract_inverted_index.tool | 222 |
| abstract_inverted_index.unit | 42 |
| abstract_inverted_index.used | 120 |
| abstract_inverted_index.were | 97, 119, 176 |
| abstract_inverted_index.with | 68, 91, 99, 148, 178 |
| abstract_inverted_index.−1 | 154 |
| abstract_inverted_index.back, | 105 |
| abstract_inverted_index.based | 49 |
| abstract_inverted_index.error | 151, 166, 181 |
| abstract_inverted_index.final | 61 |
| abstract_inverted_index.force | 114, 117 |
| abstract_inverted_index.human | 247 |
| abstract_inverted_index.lower | 106 |
| abstract_inverted_index.poles | 65, 118, 205 |
| abstract_inverted_index.skied | 77 |
| abstract_inverted_index.skis. | 213 |
| abstract_inverted_index.study | 5 |
| abstract_inverted_index.swing | 28 |
| abstract_inverted_index.time) | 29 |
| abstract_inverted_index.upper | 104, 131 |
| abstract_inverted_index.using | 37, 89, 237 |
| abstract_inverted_index.−11 | 184 |
| abstract_inverted_index.(IMU). | 43 |
| abstract_inverted_index.(e.g., | 21 |
| abstract_inverted_index.Eleven | 75 |
| abstract_inverted_index.cycle, | 22 |
| abstract_inverted_index.cyclic | 73 |
| abstract_inverted_index.detect | 57 |
| abstract_inverted_index.during | 71 |
| abstract_inverted_index.events | 17, 147, 202, 210, 226 |
| abstract_inverted_index.field, | 36 |
| abstract_inverted_index.ground | 70 |
| abstract_inverted_index.memory | 53 |
| abstract_inverted_index.method | 13, 47, 197, 218 |
| abstract_inverted_index.neural | 54 |
| abstract_inverted_index.phases | 229 |
| abstract_inverted_index.placed | 128 |
| abstract_inverted_index.single | 39, 239 |
| abstract_inverted_index.between | 167, 191 |
| abstract_inverted_index.contact | 26, 62 |
| abstract_inverted_index.initial | 59 |
| abstract_inverted_index.insoles | 115 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.network | 140 |
| abstract_inverted_index.provide | 8 |
| abstract_inverted_index.ranging | 152, 182 |
| abstract_inverted_index.rolling | 94 |
| abstract_inverted_index.showing | 233 |
| abstract_inverted_index.skating | 33 |
| abstract_inverted_index.system. | 124 |
| abstract_inverted_index.Methods: | 44 |
| abstract_inverted_index.Results: | 125 |
| abstract_inverted_index.athletes | 76 |
| abstract_inverted_index.attached | 101 |
| abstract_inverted_index.detected | 198 |
| abstract_inverted_index.equipped | 98 |
| abstract_inverted_index.estimate | 242 |
| abstract_inverted_index.inertial | 40 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.networks | 55 |
| abstract_inverted_index.proposed | 216 |
| abstract_inverted_index.provided | 133 |
| abstract_inverted_index.provides | 219 |
| abstract_inverted_index.results, | 136 |
| abstract_inverted_index.skating, | 232 |
| abstract_inverted_index.standard | 161 |
| abstract_inverted_index.sternum. | 111 |
| abstract_inverted_index.temporal | 16, 146, 225 |
| abstract_inverted_index.assessing | 224 |
| abstract_inverted_index.determine | 15, 144 |
| abstract_inverted_index.developed | 46 |
| abstract_inverted_index.deviation | 162 |
| abstract_inverted_index.different | 93, 243 |
| abstract_inverted_index.intensity | 88 |
| abstract_inverted_index.potential | 235 |
| abstract_inverted_index.promising | 221 |
| abstract_inverted_index.reference | 123 |
| abstract_inverted_index.Objective: | 0 |
| abstract_inverted_index.calculated | 177 |
| abstract_inverted_index.movements. | 74 |
| abstract_inverted_index.parameters | 20, 175, 245 |
| abstract_inverted_index.roller-ski | 32, 231 |
| abstract_inverted_index.short-term | 52 |
| abstract_inverted_index.Conclusion: | 214 |
| abstract_inverted_index.inner-cycle | 19, 174, 228 |
| abstract_inverted_index.locomotion. | 248 |
| abstract_inverted_index.measurement | 41 |
| abstract_inverted_index.coefficients. | 95 |
| abstract_inverted_index.corresponding | 173 |
| abstract_inverted_index.cross-country | 31 |
| abstract_inverted_index.spatiotemporal | 244 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5014685834 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I184942183 |
| citation_normalized_percentile.value | 0.27020992 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |