INR-LDDMM: Fluid-based Medical Image Registration Integrating Implicit Neural Representation and Large Deformation Diffeomorphic Metric Mapping Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.09473
We propose a fluid-based registration framework of medical images based on implicit neural representation. By integrating implicit neural representation and Large Deformable Diffeomorphic Metric Mapping (LDDMM), we employ a Multilayer Perceptron (MLP) as a velocity generator while optimizing velocity and image similarity. Moreover, we adopt a coarse-to-fine approach to address the challenge of deformable-based registration methods dropping into local optimal solutions, thus aiding the management of significant deformations in medical image registration. Our algorithm has been validated on a paired CT-CBCT dataset of 50 patients,taking the Dice coefficient of transferred annotations as an evaluation metric. Compared to existing methods, our approach achieves the state-of-the-art performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.09473
- https://arxiv.org/pdf/2308.09473
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386080661
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386080661Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.09473Digital Object Identifier
- Title
-
INR-LDDMM: Fluid-based Medical Image Registration Integrating Implicit Neural Representation and Large Deformation Diffeomorphic Metric MappingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-18Full publication date if available
- Authors
-
Chulong Zhang, Xiaokun LiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.09473Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.09473Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.09473Direct OA link when available
- Concepts
-
Image registration, Artificial intelligence, Metric (unit), Computer science, Diffeomorphism, Representation (politics), Image (mathematics), Similarity (geometry), Computer vision, Pattern recognition (psychology), Artificial neural network, Mathematics, Mathematical analysis, Political science, Politics, Economics, Law, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386080661 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.09473 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.09473 |
| ids.openalex | https://openalex.org/W4386080661 |
| fwci | |
| type | preprint |
| title | INR-LDDMM: Fluid-based Medical Image Registration Integrating Implicit Neural Representation and Large Deformation Diffeomorphic Metric Mapping |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9855999946594238 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C166704113 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7270469665527344 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[0].display_name | Image registration |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.717681884765625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C176217482 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6714408993721008 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[2].display_name | Metric (unit) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.631402313709259 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C47556283 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6269999742507935 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1058314 |
| concepts[4].display_name | Diffeomorphism |
| concepts[5].id | https://openalex.org/C2776359362 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6025358438491821 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[5].display_name | Representation (politics) |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5838189125061035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C103278499 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5255217552185059 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[7].display_name | Similarity (geometry) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5242826342582703 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4560331106185913 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41288381814956665 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.23768219351768494 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06863671541213989 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C94625758 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[14].display_name | Politics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C21547014 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[17].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/image-registration |
| keywords[0].score | 0.7270469665527344 |
| keywords[0].display_name | Image registration |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.717681884765625 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/metric |
| keywords[2].score | 0.6714408993721008 |
| keywords[2].display_name | Metric (unit) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.631402313709259 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/diffeomorphism |
| keywords[4].score | 0.6269999742507935 |
| keywords[4].display_name | Diffeomorphism |
| keywords[5].id | https://openalex.org/keywords/representation |
| keywords[5].score | 0.6025358438491821 |
| keywords[5].display_name | Representation (politics) |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.5838189125061035 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/similarity |
| keywords[7].score | 0.5255217552185059 |
| keywords[7].display_name | Similarity (geometry) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.5242826342582703 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4560331106185913 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.41288381814956665 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.23768219351768494 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.06863671541213989 |
| keywords[12].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.09473 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.09473 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.09473 |
| locations[1].id | doi:10.48550/arxiv.2308.09473 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.09473 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057823939 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-1149-1860 |
| authorships[0].author.display_name | Chulong Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Chulong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056242195 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1207-5726 |
| authorships[1].author.display_name | Xiaokun Liang |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Liang, Xiaokun |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.09473 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | INR-LDDMM: Fluid-based Medical Image Registration Integrating Implicit Neural Representation and Large Deformation Diffeomorphic Metric Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W4386794506, https://openalex.org/W2075372083, https://openalex.org/W4293508317, https://openalex.org/W3104281043, https://openalex.org/W2891397405, https://openalex.org/W2462155254, https://openalex.org/W4212817163, https://openalex.org/W3217798761, https://openalex.org/W4384920019, https://openalex.org/W1982036645 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.09473 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.09473 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.09473 |
| primary_location.id | pmh:oai:arXiv.org:2308.09473 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.09473 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.09473 |
| publication_date | 2023-08-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 28, 33, 45, 78 |
| abstract_inverted_index.50 | 83 |
| abstract_inverted_index.By | 14 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 32, 91 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.of | 6, 52, 65, 82, 88 |
| abstract_inverted_index.on | 10, 77 |
| abstract_inverted_index.to | 48, 96 |
| abstract_inverted_index.we | 26, 43 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.and | 19, 39 |
| abstract_inverted_index.has | 74 |
| abstract_inverted_index.our | 99 |
| abstract_inverted_index.the | 50, 63, 85, 102 |
| abstract_inverted_index.Dice | 86 |
| abstract_inverted_index.been | 75 |
| abstract_inverted_index.into | 57 |
| abstract_inverted_index.thus | 61 |
| abstract_inverted_index.(MLP) | 31 |
| abstract_inverted_index.Large | 20 |
| abstract_inverted_index.adopt | 44 |
| abstract_inverted_index.based | 9 |
| abstract_inverted_index.image | 40, 70 |
| abstract_inverted_index.local | 58 |
| abstract_inverted_index.while | 36 |
| abstract_inverted_index.Metric | 23 |
| abstract_inverted_index.aiding | 62 |
| abstract_inverted_index.employ | 27 |
| abstract_inverted_index.images | 8 |
| abstract_inverted_index.neural | 12, 17 |
| abstract_inverted_index.paired | 79 |
| abstract_inverted_index.CT-CBCT | 80 |
| abstract_inverted_index.Mapping | 24 |
| abstract_inverted_index.address | 49 |
| abstract_inverted_index.dataset | 81 |
| abstract_inverted_index.medical | 7, 69 |
| abstract_inverted_index.methods | 55 |
| abstract_inverted_index.metric. | 94 |
| abstract_inverted_index.optimal | 59 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.(LDDMM), | 25 |
| abstract_inverted_index.Compared | 95 |
| abstract_inverted_index.achieves | 101 |
| abstract_inverted_index.approach | 47, 100 |
| abstract_inverted_index.dropping | 56 |
| abstract_inverted_index.existing | 97 |
| abstract_inverted_index.implicit | 11, 16 |
| abstract_inverted_index.methods, | 98 |
| abstract_inverted_index.velocity | 34, 38 |
| abstract_inverted_index.Moreover, | 42 |
| abstract_inverted_index.algorithm | 73 |
| abstract_inverted_index.challenge | 51 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.generator | 35 |
| abstract_inverted_index.validated | 76 |
| abstract_inverted_index.Deformable | 21 |
| abstract_inverted_index.Multilayer | 29 |
| abstract_inverted_index.Perceptron | 30 |
| abstract_inverted_index.evaluation | 93 |
| abstract_inverted_index.management | 64 |
| abstract_inverted_index.optimizing | 37 |
| abstract_inverted_index.solutions, | 60 |
| abstract_inverted_index.annotations | 90 |
| abstract_inverted_index.coefficient | 87 |
| abstract_inverted_index.fluid-based | 3 |
| abstract_inverted_index.integrating | 15 |
| abstract_inverted_index.significant | 66 |
| abstract_inverted_index.similarity. | 41 |
| abstract_inverted_index.transferred | 89 |
| abstract_inverted_index.deformations | 67 |
| abstract_inverted_index.performance. | 104 |
| abstract_inverted_index.registration | 4, 54 |
| abstract_inverted_index.Diffeomorphic | 22 |
| abstract_inverted_index.registration. | 71 |
| abstract_inverted_index.coarse-to-fine | 46 |
| abstract_inverted_index.representation | 18 |
| abstract_inverted_index.patients,taking | 84 |
| abstract_inverted_index.representation. | 13 |
| abstract_inverted_index.deformable-based | 53 |
| abstract_inverted_index.state-of-the-art | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |