Insight-LLM: LLM-enhanced Multi-view Fusion in Insider Threat Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.01509
Insider threat detection (ITD) requires analyzing sparse, heterogeneous user behavior. Existing ITD methods predominantly rely on single-view modeling, resulting in limited coverage and missed anomalies. While multi-view learning has shown promise in other domains, its direct application to ITD introduces significant challenges: scalability bottlenecks from independently trained sub-models, semantic misalignment across disparate feature spaces, and view imbalance that causes high-signal modalities to overshadow weaker ones. In this work, we present Insight-LLM, the first modular multi-view fusion framework specifically tailored for insider threat detection. Insight-LLM employs frozen, pre-nes, achieving state-of-the-art detection with low latency and parameter overhead.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.01509
- https://arxiv.org/pdf/2509.01509
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416694288
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416694288Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.01509Digital Object Identifier
- Title
-
Insight-LLM: LLM-enhanced Multi-view Fusion in Insider Threat DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-01Full publication date if available
- Authors
-
Chengyu Song, Jianming ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.01509Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.01509Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.01509Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416694288 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.01509 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.01509 |
| ids.openalex | https://openalex.org/W4416694288 |
| fwci | |
| type | preprint |
| title | Insight-LLM: LLM-enhanced Multi-view Fusion in Insider Threat Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.01509 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.01509 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.01509 |
| locations[1].id | doi:10.48550/arxiv.2509.01509 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.01509 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5032690266 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7020-7603 |
| authorships[0].author.display_name | Chengyu Song |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Song, Chengyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023144456 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4928-8194 |
| authorships[1].author.display_name | Jianming Zheng |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Zheng, Jianming |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.01509 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Insight-LLM: LLM-enhanced Multi-view Fusion in Insider Threat Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T20:50:16.243143 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.01509 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.01509 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.01509 |
| primary_location.id | pmh:oai:arXiv.org:2509.01509 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.01509 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.01509 |
| publication_date | 2025-09-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.in | 19, 31 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 37, 61 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.ITD | 11, 38 |
| abstract_inverted_index.and | 22, 54, 93 |
| abstract_inverted_index.for | 79 |
| abstract_inverted_index.has | 28 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.low | 91 |
| abstract_inverted_index.the | 71 |
| abstract_inverted_index.from | 44 |
| abstract_inverted_index.rely | 14 |
| abstract_inverted_index.that | 57 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.user | 8 |
| abstract_inverted_index.view | 55 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.(ITD) | 3 |
| abstract_inverted_index.While | 25 |
| abstract_inverted_index.first | 72 |
| abstract_inverted_index.ones. | 64 |
| abstract_inverted_index.other | 32 |
| abstract_inverted_index.shown | 29 |
| abstract_inverted_index.work, | 67 |
| abstract_inverted_index.across | 50 |
| abstract_inverted_index.causes | 58 |
| abstract_inverted_index.direct | 35 |
| abstract_inverted_index.fusion | 75 |
| abstract_inverted_index.missed | 23 |
| abstract_inverted_index.threat | 1, 81 |
| abstract_inverted_index.weaker | 63 |
| abstract_inverted_index.Insider | 0 |
| abstract_inverted_index.employs | 84 |
| abstract_inverted_index.feature | 52 |
| abstract_inverted_index.frozen, | 85 |
| abstract_inverted_index.insider | 80 |
| abstract_inverted_index.latency | 92 |
| abstract_inverted_index.limited | 20 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.modular | 73 |
| abstract_inverted_index.present | 69 |
| abstract_inverted_index.promise | 30 |
| abstract_inverted_index.spaces, | 53 |
| abstract_inverted_index.sparse, | 6 |
| abstract_inverted_index.trained | 46 |
| abstract_inverted_index.Existing | 10 |
| abstract_inverted_index.coverage | 21 |
| abstract_inverted_index.domains, | 33 |
| abstract_inverted_index.learning | 27 |
| abstract_inverted_index.pre-nes, | 86 |
| abstract_inverted_index.requires | 4 |
| abstract_inverted_index.semantic | 48 |
| abstract_inverted_index.tailored | 78 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.analyzing | 5 |
| abstract_inverted_index.behavior. | 9 |
| abstract_inverted_index.detection | 2, 89 |
| abstract_inverted_index.disparate | 51 |
| abstract_inverted_index.framework | 76 |
| abstract_inverted_index.imbalance | 56 |
| abstract_inverted_index.modeling, | 17 |
| abstract_inverted_index.overhead. | 95 |
| abstract_inverted_index.parameter | 94 |
| abstract_inverted_index.resulting | 18 |
| abstract_inverted_index.anomalies. | 24 |
| abstract_inverted_index.detection. | 82 |
| abstract_inverted_index.introduces | 39 |
| abstract_inverted_index.modalities | 60 |
| abstract_inverted_index.multi-view | 26, 74 |
| abstract_inverted_index.overshadow | 62 |
| abstract_inverted_index.Insight-LLM | 83 |
| abstract_inverted_index.application | 36 |
| abstract_inverted_index.bottlenecks | 43 |
| abstract_inverted_index.challenges: | 41 |
| abstract_inverted_index.high-signal | 59 |
| abstract_inverted_index.scalability | 42 |
| abstract_inverted_index.significant | 40 |
| abstract_inverted_index.single-view | 16 |
| abstract_inverted_index.sub-models, | 47 |
| abstract_inverted_index.Insight-LLM, | 70 |
| abstract_inverted_index.misalignment | 49 |
| abstract_inverted_index.specifically | 77 |
| abstract_inverted_index.heterogeneous | 7 |
| abstract_inverted_index.independently | 45 |
| abstract_inverted_index.predominantly | 13 |
| abstract_inverted_index.state-of-the-art | 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |