Inspection Game with Location-Specific Detection Capabilities: Exact and Approximate Algorithms for Strategic Resource Coordination Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.11545
We consider a zero-sum inspection game, in which a defender positions detectors across a critical system to detect multiple attacks caused by an attacker. We assume that detection is imperfect, and each detector location is associated with a probability of detecting attacks within its set of monitored system components. The objective of the defender (resp. attacker) is to minimize (resp. maximize) the expected number of undetected attacks. To compute Nash equilibria for this large-scale zero-sum game, we formulate a linear program with a small number of constraints that can be solved via column generation. We provide an exact mixed-integer program for the pricing problem and leverage its supermodular structure to design two efficient approaches for computing approximate Nash equilibria with theoretical guarantees: A column generation and a multiplicative weights update algorithm, both with approximate best responses. To address the computational challenges posed by combinatorial attacker strategies, each iteration of our multiplicative weights update algorithm computes a projection onto the polytope of marginal attack probabilities under the unnormalized relative entropy, for which we derive a closed-form expression and a linear-time algorithm. Computational results on real-world gas distribution networks illustrate the performance and scalability of our solution approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.11545
- https://arxiv.org/pdf/2404.11545
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394948092
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394948092Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.11545Digital Object Identifier
- Title
-
Inspection Game with Location-Specific Detection Capabilities: Exact and Approximate Algorithms for Strategic Resource CoordinationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-17Full publication date if available
- Authors
-
Bastián Bahamondes, Mathieu DahanList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.11545Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.11545Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.11545Direct OA link when available
- Concepts
-
Computer science, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394948092 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.11545 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.11545 |
| ids.openalex | https://openalex.org/W4394948092 |
| fwci | |
| type | preprint |
| title | Inspection Game with Location-Specific Detection Capabilities: Exact and Approximate Algorithms for Strategic Resource Coordination |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4517790377140045 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C144133560 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4397064745426178 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[1].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4517790377140045 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/business |
| keywords[1].score | 0.4397064745426178 |
| keywords[1].display_name | Business |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.11545 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.11545 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.11545 |
| locations[1].id | doi:10.48550/arxiv.2404.11545 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.11545 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5040602322 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5426-3717 |
| authorships[0].author.display_name | Bastián Bahamondes |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bahamondes, Bastián |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067459518 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0973-6973 |
| authorships[1].author.display_name | Mathieu Dahan |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dahan, Mathieu |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.11545 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-19T00:00:00 |
| display_name | Inspection Game with Location-Specific Detection Capabilities: Exact and Approximate Algorithms for Strategic Resource Coordination |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.11545 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.11545 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.11545 |
| primary_location.id | pmh:oai:arXiv.org:2404.11545 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.11545 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.11545 |
| publication_date | 2024-04-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 122 |
| abstract_inverted_index.a | 2, 8, 13, 37, 78, 82, 126, 155, 173, 177 |
| abstract_inverted_index.To | 67, 136 |
| abstract_inverted_index.We | 0, 24, 94 |
| abstract_inverted_index.an | 22, 96 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.by | 21, 142 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 28, 34, 56 |
| abstract_inverted_index.of | 39, 45, 51, 64, 85, 148, 160, 192 |
| abstract_inverted_index.on | 182 |
| abstract_inverted_index.to | 16, 57, 109 |
| abstract_inverted_index.we | 76, 171 |
| abstract_inverted_index.The | 49 |
| abstract_inverted_index.and | 30, 104, 125, 176, 190 |
| abstract_inverted_index.can | 88 |
| abstract_inverted_index.for | 71, 100, 114, 169 |
| abstract_inverted_index.gas | 184 |
| abstract_inverted_index.its | 43, 106 |
| abstract_inverted_index.our | 149, 193 |
| abstract_inverted_index.set | 44 |
| abstract_inverted_index.the | 52, 61, 101, 138, 158, 165, 188 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.via | 91 |
| abstract_inverted_index.Nash | 69, 117 |
| abstract_inverted_index.best | 134 |
| abstract_inverted_index.both | 131 |
| abstract_inverted_index.each | 31, 146 |
| abstract_inverted_index.onto | 157 |
| abstract_inverted_index.that | 26, 87 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.with | 36, 81, 119, 132 |
| abstract_inverted_index.exact | 97 |
| abstract_inverted_index.game, | 5, 75 |
| abstract_inverted_index.posed | 141 |
| abstract_inverted_index.small | 83 |
| abstract_inverted_index.under | 164 |
| abstract_inverted_index.which | 7, 170 |
| abstract_inverted_index.(resp. | 54, 59 |
| abstract_inverted_index.across | 12 |
| abstract_inverted_index.assume | 25 |
| abstract_inverted_index.attack | 162 |
| abstract_inverted_index.caused | 20 |
| abstract_inverted_index.column | 92, 123 |
| abstract_inverted_index.derive | 172 |
| abstract_inverted_index.design | 110 |
| abstract_inverted_index.detect | 17 |
| abstract_inverted_index.linear | 79 |
| abstract_inverted_index.number | 63, 84 |
| abstract_inverted_index.solved | 90 |
| abstract_inverted_index.system | 15, 47 |
| abstract_inverted_index.update | 129, 152 |
| abstract_inverted_index.within | 42 |
| abstract_inverted_index.address | 137 |
| abstract_inverted_index.attacks | 19, 41 |
| abstract_inverted_index.compute | 68 |
| abstract_inverted_index.pricing | 102 |
| abstract_inverted_index.problem | 103 |
| abstract_inverted_index.program | 80, 99 |
| abstract_inverted_index.provide | 95 |
| abstract_inverted_index.results | 181 |
| abstract_inverted_index.weights | 128, 151 |
| abstract_inverted_index.attacker | 144 |
| abstract_inverted_index.attacks. | 66 |
| abstract_inverted_index.computes | 154 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.critical | 14 |
| abstract_inverted_index.defender | 9, 53 |
| abstract_inverted_index.detector | 32 |
| abstract_inverted_index.entropy, | 168 |
| abstract_inverted_index.expected | 62 |
| abstract_inverted_index.leverage | 105 |
| abstract_inverted_index.location | 33 |
| abstract_inverted_index.marginal | 161 |
| abstract_inverted_index.minimize | 58 |
| abstract_inverted_index.multiple | 18 |
| abstract_inverted_index.networks | 186 |
| abstract_inverted_index.polytope | 159 |
| abstract_inverted_index.relative | 167 |
| abstract_inverted_index.solution | 194 |
| abstract_inverted_index.zero-sum | 3, 74 |
| abstract_inverted_index.algorithm | 153 |
| abstract_inverted_index.attacker) | 55 |
| abstract_inverted_index.attacker. | 23 |
| abstract_inverted_index.computing | 115 |
| abstract_inverted_index.detecting | 40 |
| abstract_inverted_index.detection | 27 |
| abstract_inverted_index.detectors | 11 |
| abstract_inverted_index.efficient | 112 |
| abstract_inverted_index.formulate | 77 |
| abstract_inverted_index.iteration | 147 |
| abstract_inverted_index.maximize) | 60 |
| abstract_inverted_index.monitored | 46 |
| abstract_inverted_index.objective | 50 |
| abstract_inverted_index.positions | 10 |
| abstract_inverted_index.structure | 108 |
| abstract_inverted_index.algorithm, | 130 |
| abstract_inverted_index.algorithm. | 179 |
| abstract_inverted_index.approaches | 113 |
| abstract_inverted_index.associated | 35 |
| abstract_inverted_index.challenges | 140 |
| abstract_inverted_index.equilibria | 70, 118 |
| abstract_inverted_index.expression | 175 |
| abstract_inverted_index.generation | 124 |
| abstract_inverted_index.illustrate | 187 |
| abstract_inverted_index.imperfect, | 29 |
| abstract_inverted_index.inspection | 4 |
| abstract_inverted_index.projection | 156 |
| abstract_inverted_index.real-world | 183 |
| abstract_inverted_index.responses. | 135 |
| abstract_inverted_index.undetected | 65 |
| abstract_inverted_index.approaches. | 195 |
| abstract_inverted_index.approximate | 116, 133 |
| abstract_inverted_index.closed-form | 174 |
| abstract_inverted_index.components. | 48 |
| abstract_inverted_index.constraints | 86 |
| abstract_inverted_index.generation. | 93 |
| abstract_inverted_index.guarantees: | 121 |
| abstract_inverted_index.large-scale | 73 |
| abstract_inverted_index.linear-time | 178 |
| abstract_inverted_index.performance | 189 |
| abstract_inverted_index.probability | 38 |
| abstract_inverted_index.scalability | 191 |
| abstract_inverted_index.strategies, | 145 |
| abstract_inverted_index.theoretical | 120 |
| abstract_inverted_index.distribution | 185 |
| abstract_inverted_index.supermodular | 107 |
| abstract_inverted_index.unnormalized | 166 |
| abstract_inverted_index.Computational | 180 |
| abstract_inverted_index.combinatorial | 143 |
| abstract_inverted_index.computational | 139 |
| abstract_inverted_index.mixed-integer | 98 |
| abstract_inverted_index.probabilities | 163 |
| abstract_inverted_index.multiplicative | 127, 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |