Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.15793
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift. Specifically, UDA methods try to align the source and target representations to improve the generalization on the target domain. Further, UDA methods work under the assumption that the source data is accessible during the adaptation process. However, in real-world scenarios, the labelled source data is often restricted due to privacy regulations, data transmission constraints, or proprietary data concerns. The Source-Free Domain Adaptation (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data. In this paper, we explore the SFDA setting for the task of adaptive object detection. To this end, we propose a novel training strategy for adapting a source-trained object detector to the target domain without source data. More precisely, we design a novel contrastive loss to enhance the target representations by exploiting the objects relations for a given target domain input. These object instance relations are modelled using an Instance Relation Graph (IRG) network, which are then used to guide the contrastive representation learning. In addition, we utilize a student-teacher based knowledge distillation strategy to avoid overfitting to the noisy pseudo-labels generated by the source-trained model. Extensive experiments on multiple object detection benchmark datasets show that the proposed approach is able to efficiently adapt source-trained object detectors to the target domain, outperforming previous state-of-the-art domain adaptive detection methods. Code and models are provided in \href{https://viudomain.github.io/irg-sfda-web/}{https://viudomain.github.io/irg-sfda-web/}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.15793
- https://arxiv.org/pdf/2203.15793
- OA Status
- green
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221151970
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221151970Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.15793Digital Object Identifier
- Title
-
Instance Relation Graph Guided Source-Free Domain Adaptive Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-29Full publication date if available
- Authors
-
Vibashan VS, Poojan Oza, Vishal M. PatelList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.15793Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.15793Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.15793Direct OA link when available
- Concepts
-
Computer science, Source code, Artificial intelligence, Domain (mathematical analysis), Overfitting, Relation (database), Object (grammar), Representation (politics), Benchmark (surveying), Graph, Object detection, Machine learning, Pattern recognition (psychology), Data mining, Theoretical computer science, Artificial neural network, Programming language, Political science, Politics, Law, Mathematics, Mathematical analysis, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221151970 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.15793 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.15793 |
| ids.openalex | https://openalex.org/W4221151970 |
| fwci | |
| type | preprint |
| title | Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9458000063896179 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7893900871276855 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C43126263 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6145270466804504 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[1].display_name | Source code |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5681663751602173 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.549828052520752 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C22019652 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5442474484443665 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[4].display_name | Overfitting |
| concepts[5].id | https://openalex.org/C25343380 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5262554883956909 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[5].display_name | Relation (database) |
| concepts[6].id | https://openalex.org/C2781238097 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5231512784957886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[6].display_name | Object (grammar) |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4490051865577698 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C185798385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4477255642414093 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[8].display_name | Benchmark (surveying) |
| concepts[9].id | https://openalex.org/C132525143 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43263447284698486 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[9].display_name | Graph |
| concepts[10].id | https://openalex.org/C2776151529 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42753466963768005 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[10].display_name | Object detection |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39776843786239624 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3236253559589386 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3140466511249542 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C80444323 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2710651159286499 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[14].display_name | Theoretical computer science |
| concepts[15].id | https://openalex.org/C50644808 |
| concepts[15].level | 2 |
| concepts[15].score | 0.20242854952812195 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[15].display_name | Artificial neural network |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0838029682636261 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C205649164 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[22].display_name | Geography |
| concepts[23].id | https://openalex.org/C13280743 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[23].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7893900871276855 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/source-code |
| keywords[1].score | 0.6145270466804504 |
| keywords[1].display_name | Source code |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5681663751602173 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.549828052520752 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/overfitting |
| keywords[4].score | 0.5442474484443665 |
| keywords[4].display_name | Overfitting |
| keywords[5].id | https://openalex.org/keywords/relation |
| keywords[5].score | 0.5262554883956909 |
| keywords[5].display_name | Relation (database) |
| keywords[6].id | https://openalex.org/keywords/object |
| keywords[6].score | 0.5231512784957886 |
| keywords[6].display_name | Object (grammar) |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.4490051865577698 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/benchmark |
| keywords[8].score | 0.4477255642414093 |
| keywords[8].display_name | Benchmark (surveying) |
| keywords[9].id | https://openalex.org/keywords/graph |
| keywords[9].score | 0.43263447284698486 |
| keywords[9].display_name | Graph |
| keywords[10].id | https://openalex.org/keywords/object-detection |
| keywords[10].score | 0.42753466963768005 |
| keywords[10].display_name | Object detection |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.39776843786239624 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3236253559589386 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3140466511249542 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[14].score | 0.2710651159286499 |
| keywords[14].display_name | Theoretical computer science |
| keywords[15].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[15].score | 0.20242854952812195 |
| keywords[15].display_name | Artificial neural network |
| keywords[16].id | https://openalex.org/keywords/programming-language |
| keywords[16].score | 0.0838029682636261 |
| keywords[16].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.15793 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.15793 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.15793 |
| locations[1].id | doi:10.48550/arxiv.2203.15793 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.15793 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5004330920 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vibashan VS |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | VS, Vibashan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062459443 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5993-6650 |
| authorships[1].author.display_name | Poojan Oza |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Oza, Poojan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004716468 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5239-692X |
| authorships[2].author.display_name | Vishal M. Patel |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Patel, Vishal M. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.15793 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Instance Relation Graph Guided Source-Free Domain Adaptive Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W4378510483, https://openalex.org/W4390721878 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.15793 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.15793 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.15793 |
| primary_location.id | pmh:oai:arXiv.org:2203.15793 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.15793 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.15793 |
| publication_date | 2022-03-29 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 86, 120, 126, 141, 156, 188 |
| abstract_inverted_index.In | 100, 184 |
| abstract_inverted_index.To | 115 |
| abstract_inverted_index.an | 5, 168 |
| abstract_inverted_index.by | 84, 150, 202 |
| abstract_inverted_index.in | 52, 243 |
| abstract_inverted_index.is | 4, 45, 59, 219 |
| abstract_inverted_index.of | 12, 111 |
| abstract_inverted_index.on | 30, 208 |
| abstract_inverted_index.or | 69 |
| abstract_inverted_index.to | 8, 19, 26, 63, 80, 96, 130, 145, 178, 194, 197, 221, 227 |
| abstract_inverted_index.we | 103, 118, 139, 186 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.UDA | 16, 35 |
| abstract_inverted_index.and | 23, 239 |
| abstract_inverted_index.are | 165, 175, 241 |
| abstract_inverted_index.due | 62 |
| abstract_inverted_index.for | 89, 108, 124, 155 |
| abstract_inverted_index.the | 10, 21, 28, 31, 39, 42, 48, 55, 90, 97, 105, 109, 131, 147, 152, 180, 198, 203, 216, 228 |
| abstract_inverted_index.try | 18 |
| abstract_inverted_index.Code | 238 |
| abstract_inverted_index.More | 137 |
| abstract_inverted_index.SFDA | 106 |
| abstract_inverted_index.able | 220 |
| abstract_inverted_index.aims | 79 |
| abstract_inverted_index.data | 44, 58, 66, 71 |
| abstract_inverted_index.end, | 117 |
| abstract_inverted_index.loss | 144 |
| abstract_inverted_index.show | 214 |
| abstract_inverted_index.task | 110 |
| abstract_inverted_index.that | 41, 215 |
| abstract_inverted_index.then | 176 |
| abstract_inverted_index.this | 101, 116 |
| abstract_inverted_index.used | 177 |
| abstract_inverted_index.work | 37 |
| abstract_inverted_index.(IRG) | 172 |
| abstract_inverted_index.(UDA) | 3 |
| abstract_inverted_index.Graph | 171 |
| abstract_inverted_index.These | 161 |
| abstract_inverted_index.adapt | 223 |
| abstract_inverted_index.align | 20 |
| abstract_inverted_index.avoid | 195 |
| abstract_inverted_index.based | 190 |
| abstract_inverted_index.data. | 99, 136 |
| abstract_inverted_index.given | 157 |
| abstract_inverted_index.guide | 179 |
| abstract_inverted_index.issue | 11 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.noisy | 199 |
| abstract_inverted_index.novel | 121, 142 |
| abstract_inverted_index.often | 60 |
| abstract_inverted_index.these | 82 |
| abstract_inverted_index.under | 38 |
| abstract_inverted_index.using | 167 |
| abstract_inverted_index.which | 174 |
| abstract_inverted_index.(SFDA) | 77 |
| abstract_inverted_index.Domain | 1, 75 |
| abstract_inverted_index.access | 95 |
| abstract_inverted_index.design | 140 |
| abstract_inverted_index.domain | 13, 92, 133, 159, 234 |
| abstract_inverted_index.during | 47 |
| abstract_inverted_index.input. | 160 |
| abstract_inverted_index.model. | 205 |
| abstract_inverted_index.models | 240 |
| abstract_inverted_index.object | 113, 128, 162, 210, 225 |
| abstract_inverted_index.paper, | 102 |
| abstract_inverted_index.shift. | 14 |
| abstract_inverted_index.source | 22, 43, 57, 98, 135 |
| abstract_inverted_index.tackle | 9 |
| abstract_inverted_index.target | 24, 32, 91, 132, 148, 158, 229 |
| abstract_inverted_index.domain, | 230 |
| abstract_inverted_index.domain. | 33 |
| abstract_inverted_index.enhance | 146 |
| abstract_inverted_index.explore | 104 |
| abstract_inverted_index.improve | 27 |
| abstract_inverted_index.methods | 17, 36 |
| abstract_inverted_index.objects | 153 |
| abstract_inverted_index.privacy | 64 |
| abstract_inverted_index.propose | 119 |
| abstract_inverted_index.setting | 78, 107 |
| abstract_inverted_index.utilize | 187 |
| abstract_inverted_index.without | 93, 134 |
| abstract_inverted_index.Further, | 34 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.Instance | 169 |
| abstract_inverted_index.Relation | 170 |
| abstract_inverted_index.adapting | 85, 125 |
| abstract_inverted_index.adaptive | 112, 235 |
| abstract_inverted_index.approach | 7, 218 |
| abstract_inverted_index.concerns | 83 |
| abstract_inverted_index.datasets | 213 |
| abstract_inverted_index.detector | 129 |
| abstract_inverted_index.instance | 163 |
| abstract_inverted_index.labelled | 56 |
| abstract_inverted_index.methods. | 237 |
| abstract_inverted_index.modelled | 166 |
| abstract_inverted_index.multiple | 209 |
| abstract_inverted_index.network, | 173 |
| abstract_inverted_index.previous | 232 |
| abstract_inverted_index.process. | 50 |
| abstract_inverted_index.proposed | 217 |
| abstract_inverted_index.provided | 242 |
| abstract_inverted_index.strategy | 123, 193 |
| abstract_inverted_index.training | 122 |
| abstract_inverted_index.Extensive | 206 |
| abstract_inverted_index.addition, | 185 |
| abstract_inverted_index.alleviate | 81 |
| abstract_inverted_index.benchmark | 212 |
| abstract_inverted_index.concerns. | 72 |
| abstract_inverted_index.detection | 211, 236 |
| abstract_inverted_index.detectors | 226 |
| abstract_inverted_index.effective | 6 |
| abstract_inverted_index.generated | 201 |
| abstract_inverted_index.knowledge | 191 |
| abstract_inverted_index.learning. | 183 |
| abstract_inverted_index.relations | 154, 164 |
| abstract_inverted_index.requiring | 94 |
| abstract_inverted_index.Adaptation | 2, 76 |
| abstract_inverted_index.accessible | 46 |
| abstract_inverted_index.adaptation | 49 |
| abstract_inverted_index.assumption | 40 |
| abstract_inverted_index.detection. | 114 |
| abstract_inverted_index.exploiting | 151 |
| abstract_inverted_index.precisely, | 138 |
| abstract_inverted_index.real-world | 53 |
| abstract_inverted_index.restricted | 61 |
| abstract_inverted_index.scenarios, | 54 |
| abstract_inverted_index.Source-Free | 74 |
| abstract_inverted_index.contrastive | 143, 181 |
| abstract_inverted_index.efficiently | 222 |
| abstract_inverted_index.experiments | 207 |
| abstract_inverted_index.overfitting | 196 |
| abstract_inverted_index.proprietary | 70 |
| abstract_inverted_index.Unsupervised | 0 |
| abstract_inverted_index.constraints, | 68 |
| abstract_inverted_index.distillation | 192 |
| abstract_inverted_index.regulations, | 65 |
| abstract_inverted_index.transmission | 67 |
| abstract_inverted_index.Specifically, | 15 |
| abstract_inverted_index.outperforming | 231 |
| abstract_inverted_index.pseudo-labels | 200 |
| abstract_inverted_index.generalization | 29 |
| abstract_inverted_index.representation | 182 |
| abstract_inverted_index.source-trained | 87, 127, 204, 224 |
| abstract_inverted_index.representations | 25, 149 |
| abstract_inverted_index.student-teacher | 189 |
| abstract_inverted_index.state-of-the-art | 233 |
| abstract_inverted_index.\href{https://viudomain.github.io/irg-sfda-web/}{https://viudomain.github.io/irg-sfda-web/}. | 244 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |